

Scanned by CamScanner

KURIKULUM STANDARD SEKOLAH MENENGAH

FIZALA. Tingkatan 4.

Chia Song Choy
Koay Kheng Chuan
Dr. Ooi Hean Beng
Mohd Khairul Anuar bin Md Mustafa
Rema Ragavan

Editor

Kanageaswarry Thangarajan

Pereka Bentuk

Paing Joon Nyong

Ilustrator

Asmadi bin Abdullah

PUSTAKA SARJANA SDN BHD

2019

Kandungan

			1	
	Pendahuluan	v	, , , ,	
	TEMA 1 ASAS FIZIK	1	80 100	
	BAB1 Pengukuran	2	600 00 1	
	1.1 Kuantiti Fizik	4	\$ 1,000 1,000 TE	
	1.2 Penyiasatan Saintifik	10	Son Nesi	
	Penilaian Prestasi	18		
	TEMA 2 MEKANIK NEWTON	22		
The same of	TEMA 2 MEKANIK NEWTON	23		
	BABE Daya dan Gerakan I	24		
- consistence	2.1 Gerakan Linear	26	. 7 4	
	2.2 Graf Gerakan Linear	37		
Contract of the last	2.3 Gerakan Jatuh Bebas	46		100
STATE OF THE PERSON	2.4 Inersia	52		
Section of	2.5 Momentum	58		
The State of	2.6 Daya	64	-	
Section 191	2.7 Impuls dan Daya Impuls	67		
10 To 100 mg	2.8 Berat	70		
	Penilaian Prestasi	73		
And other Designation of the last of				
	BAB3 Kegravitian	76		
-	3.1 Hukum Kegravitian Semesta Newton	78		
	3.2 Hukum Kepler	96	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3.3 Satelit Buatan Manusia	103		
	Penilaian Prestasi	112		

117 TEMA 3 HABA 118 BAB 4 Haba 120 4.1 Keseimbangan Terma 125 4.2 Muatan Haba Tentu 137 4.3 Haba Pendam Tentu 148 4.4 Hukum Gas 165 Penilaian Prestasi TEMA 4 GELOMBANG, CAHAYA DAN OPTIK 169 BAB 5 Gelombang 170 5.1 Asas Gelombang 172 5.2 Pelembapan dan Resonans 184 5.3 Pantulan Gelombang 188 5.4 Pembiasan Gelombang 194 5.5 Pembelauan Gelombang 202 5.6 Interferens Gelombang 210 5.7 Gelombang Elektromagnet 220 Penilaian Prestasi 225 BAB 6 Cahaya dan Optik 230 6.1 Pembiasan Cahaya 232 6.2 Pantulan Dalam Penuh 242 6.3 Pembentukan Imej oleh Kanta 251 6.4 Formula Kanta Nipis 259 6.5 Peralatan Optik 263 6.6 Pembentukan Imej oleh Cermin Sfera 270 Penilaian Prestasi 278 Jawapan 283 Glosari 287 Rujukan 289 Indeks 290

Pendahu Wan

Buku Teks Fizik Tingkatan 4 Kurikulum Standard Sekolah Menengah (KSSM) ini ditulis berdasarkan Dokumen Standard Kurikulum dan Pentaksiran (DSKP) Fizik Tingkatan 4 yang disediakan oleh Kementerian Pendidikan Malaysia. Bagi menjayakan pelaksanaan KSSM dan memenuhi keperluan DSKP, buku ini ditulis berasaskan tiga domain, iaitu pengetahuan, kemahiran dan nilai. Buku ini dilengkapi dengan pelbagai ciri-ciri istimewa yang memberi penekanan terhadap penerapan Sains, Teknologi, Kejuruteraan dan Matematik (STEM), kemahiran berfikir, kemahiran saintifik dan pemikiran komputasional (PK) supaya murid dapat menguasai kemahiran yang diperlukan pada abad ke-21 dan menjadi individu yang fikrah sains. Ciri-ciri istimewa dalam buku ini adalah seperti berikut:

Imbas QR code pada kulit buku untuk mendapatkan

- (a) Huraian tema buku
- (b) Biodata penulis
- (c) Maklumat dan fakta yang dikemaskini (sekiranya ada)

STEM STEM

Aktiviti yang melibatkan pembelajaran berasaskan projek melalui pendekatan STEM (Sains, Teknologi, Kejuruteraan dan Matematik). Pendekatan STEM ialah pengajaran dan pembelajaran yang mengaplikasikan pengetahuan, kemahiran dan nilai STEM.

Kemahiran Abad ke-21

Aktiviti yang melibatkan:

- Kemahiran berfikir dan menyelesaikan masalah KBMM
- Kemahiran interpersonal dan arah kendiri KIAK
- Kemahiran maklumat dan komunikasi (KMK)

Alat berfikir

Penggunaan pelbagai alat berfikir seperti alat lembaran pengurusan grafik, peta minda dan peta pemikiran adalah untuk membantu murid menguasai kemahiran berfikir.

M*alaysiaku* KEBANGGAANKU

Maklumat mengenai elemen patriotik, budaya atau pencapaian masyarakat Malaysia

Sudut Merentas Kurikulum

Maklumat elemen merentas kurikulum yang berkaitan dengan sesuatu topik

Maklumat mengenai kerjaya yang berkaitan dengan bidang fizik

Aktiviti Pembelajaran Abad ke-21 (PAK-21)

Pelbagai aktiviti yang menekankan pembelajaran berpusatkan murid dan berunsur Kemahiran Berfikir Aras Tinggi (KBAT)

Standard Pembelajaran (1.1.1)

Menunjukkan Standard Pembelajaran pada setiap halaman.

Pemikiran Komputasional

Aktiviti yang melibatkan:

- Leraian (Decomposition)
- Pengecaman corak (Pattern Recognition)
- Peniskalaan (Abstraction)
- Algoritma (Algorithms)
- Pemikiran Logik (Logical Reasoning)
- Penilaian (Evaluation)

Terdiri daripada aktiviti:

Perbincangan

Multimedia

Simulasi

Perkongsian

maklumat

Pembacaan aktif

Kendiri

Penyelesaian masalah

Eksperimen

Maklumat mengenai aplikasi sains dan teknologi yang memanfaatkan masyarakat

Fail INFO

Maklumat tambahan yang menarik berkaitan dengan sesuatu topik

Ranfallan Konsep

Rumusan ringkas pada akhir setiap bab dalam bentuk peta konsep

KUIZ interaktif

Imbas QR code untuk menjawab kuiz interaktif yang ringkas di akhir setiap bab.

Soalan KBAT yang menguji keupayaan murid dalam mengaplikasikan pengetahuan, kemahiran dan nilai dalam membuat penaakulan dan refleksi bagi menyelesaikan masalah, membuat keputusan, berinovasi serta berupaya mencipta sesuatu.

Nota ringkas untuk memudahkan pemahaman murid

Aktiviti ringkas yang boleh dijalankan oleh murid

Imbas QR code untuk mendapatkan maklumat tambahan daripada laman sesawang.

Latihan Formatif

Soalan-soalan untuk menguji kefahaman murid pada akhir setiap subtopik

refleksi kendiri

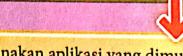
Menilai tahap penguasaan murid mengenai bab yang telah dipelajari

Latihan pengayaan dengan soalan-soalan KBAT aras 5 (Menilai) dan aras 6 (Mencipta).

Penilaian Prestasi

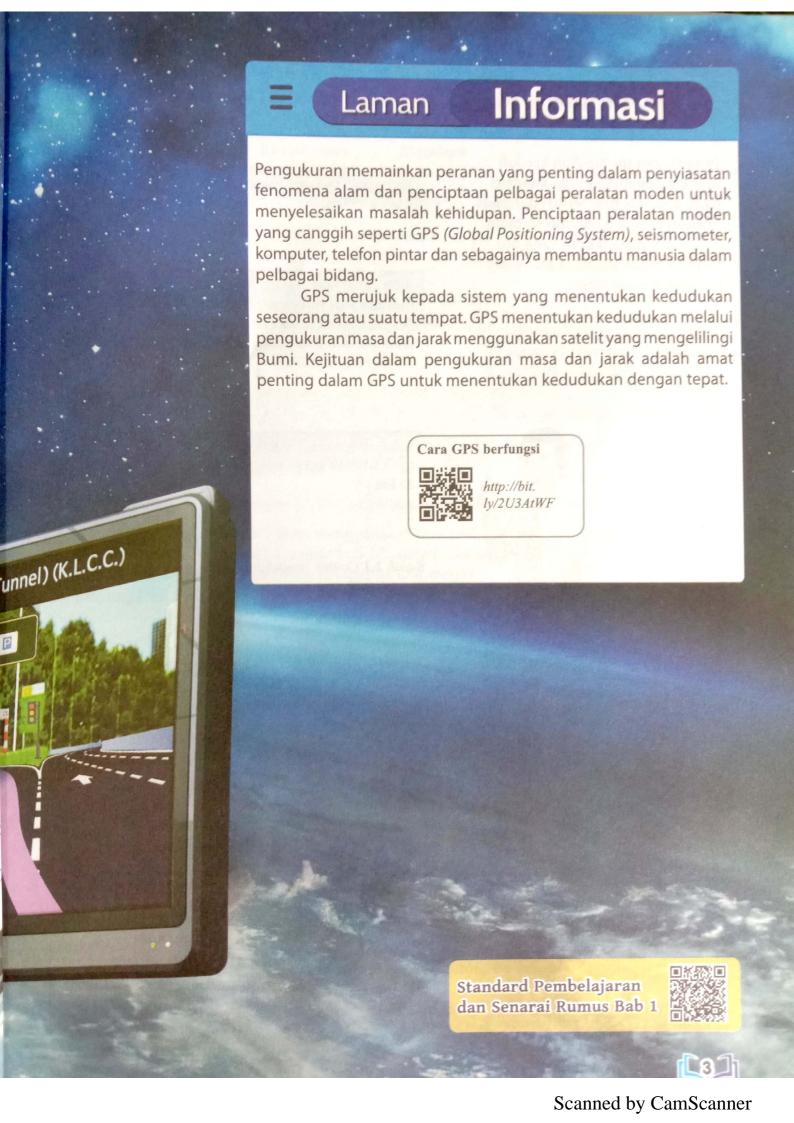
Soalan-soalan berbentuk KBAR dan KBAT pelbagai aras adalah untuk menguji kefahaman murid pada akhir setiap bab.

Panduan Mengimbas AR (Augmented Reality) untuk Animasi Tiga Dimensi yang Interaktif


Imbas QR code di sebelah untuk memuat turun aplikasi.

Gunakan aplikasi yang dimuat turun dan imbas QR code di sebelah untuk memuat turun AR Buku Teks.

Seterusnya, gunakan aplikasi tersebut untuk mengimbas halaman yang mempunyai ikon AR (halaman 88, 91 dan 256).



Scanned by CamScanner

Kuantiti Fizik

Pengukuran merupakan kaedah untuk menentukan nilai **kuantiti fizik**. Kuantiti fizik terdiri daripada kuantiti asas dan kuantiti terbitan.

Hasil pengukuran yang jitu membolehkan manusia membuat keputusan yang tepat.

Rajah 1.1 menunjukkan beberapa contoh pengukuran yang melibatkan kuantiti fizik. Nyatakan kuantiti fizik yang berkaitan.

Ketinggian Gunung Kinabalu ialah 4 095 m.

Atlet paralimpik negara, Mohamad Ridzuan Puzi mencipta rekod dunia dengan catatan masa 11.87 s dalam acara pecut 100 m (kategori T36) di Sukan Para Asia 2018.

Kelajuan harimau, *Panthera tigris* ialah 49 km j⁻¹ hingga 65 km j⁻¹.

Rajah 1.1 Contoh pengukuran yang melibatkan kuantiti fizik

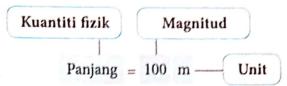
Anda telah mempelajari kuantiti asas fizik semasa di Tingkatan 1.

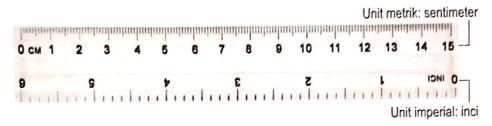
Bolehkah anda mengenal pasti kuantiti asas fizik yang terdapat dalam Rajah 1.2? Masa Cas
Panjang Frekuensi
Momentum Arus elektrik
Arus elektrik
Muatan haba tentu Tenaga
Keamatan berluminositi
Kuantiti jirim Jisima
Isi padu
Halaju
Kuasa

Rajah 1.2 Kuantiti fizik

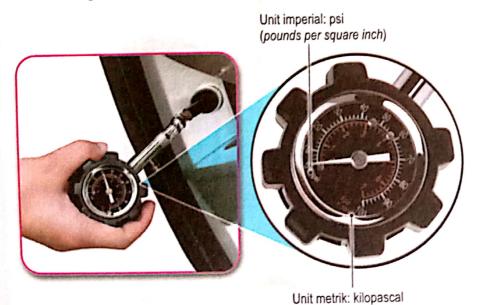
Masa, panjang, arus elektrik, suhu termodinamik, jisim, keamatan berluminositi dan kuantiti jirim merupakan kuantiti asas. Kuantiti yang selebihnya dalam Rajah 1.2 merupakan kuantiti terbitan.

Imbas kembali


Kuantiti fizik dan unitnya



Hasil pengukuran suatu kuantiti fizik boleh dinyatakan dalam magnitud bersama unitnya. Teliti Rajah 1.3.


Rajah 1.3 Contoh hasil pengukuran

Lihat pembaris anda. Adakah anda dapat melihat unit dalam sentimeter dan inci pada pembaris itu? Sentimeter ialah contoh unit metrik manakala inci ialah contoh unit imperial. Teliti Gambar foto 1.1.

Gambar foto 1.1 Unit metrik dan unit imperial pada pembaris

Pada masa kini, kita lebih biasa menggunakan unit metrik. Unit imperial jarang digunakan. Gambar foto 1.2 menunjukkan tolok tekanan tayar yang memaparkan kedua-dua unit metrik dan unit imperial.

Gambar foto 1.2 Unit metrik dan unit imperial pada tolok tekanan tayar

Contoh-contoh lain unit imperial ialah gelen, batu, kaki dan ela. Tahukah anda, unit imperial boleh ditukarkan kepada unit metrik dan sebaliknya?

Pada tahun 1999, kapal angkasa Mars Climate Orbiter tiba-tiba hilang di angkasa lepas. Kejadian ini disebabkan oleh perbezaan unit pengukuran yang digunakan. Kumpulan jurutera menggunakan unit imperial manakala kumpulan navigasi menggunakan unit S.I. Ketidakseragaman ini telah menyebabkan kesilapan pentafsiran data sehingga kapal angkasa tersebut terhempas ke permukaan Marikh.

Kuantiti Asas dan Kuantiti Terbitan

Kuantiti asas ialah kuantiti fizik yang tidak boleh diterbitkan daripada kuantiti fizik yang lain. Jadual 1.1 menunjukkan tujuh kuantiti fizik asas.

Jadual 1.1 Kuantiti asas, unit S.I. dan simbol

Kuantiti asas dan simbol	nya	Unit S.I. dan simbolnya			
Panjang	1	meter	m		
Jisim	m	kilogram	kg		
Masa	t	saat	S		
Suhu termodinamik	T	kelvin	K		
Arus elektrik	I	ampere	A		
Keamatan berluminositi	$I_{_{\boldsymbol{ u}}}$	candela	cd		
Kuantiti bahan	п	mol	mol		

Kuantiti fizik lain seperti yang ditunjukkan dalam Jadual 1.2 boleh diperihalkan dalam sebutan kuantiti asas fizik. Kuantiti fizik ini dikenali sebagai kuantiti terbitan.

Jadual 1.2 Contoh kuantiti terbitan dan simbolnya

Kuantiti terbitan da	n simbolnya	Rumus
Isi padu	V	V = 1 ³
Ketumpatan	ρ	$ \rho = \frac{m}{V} $
Halaju	ν	$v = \frac{1}{t}$
Cas	Q	$Q = I \times t$

Memerihalkan Kuantiti Terbitan dalam Sebutan Kuantiti Asas dan Unit Asas S.I.

Rumus digunakan untuk memerihalkan kuantiti terbitan dalam sebutan kuantiti asas dan seterusnya menentukan unit asas S.I. Teliti contoh yang ditunjukkan dalam Rajah 1.4 di halaman 7.

Fail INFO

Kuantiti bahan biasanya digunakan dalam Kimia, merujuk kepada kuantiti bahan bagi suatu unsur atau sebatian.

Fail INFO

Sistem Unit Antarabangsa, biasanya disebut sebagai S.I. dipersetujui dalam Persidangan Antarabangsa tentang Berat dan Ukuran (Conférence Générale des Poids et Mesures, CGPM) ke-11 pada tahun 1960 di Paris, Perancis. Penyelarasan sistem unit pengukuran di seluruh dunia ini telah memudahkan bidang saintifik, sukan, perdagangan, perubatan dan sebagainya.

Unit S.I. kg m⁻³

Rajah 1.4 Contoh memerihalkan kuantiti terbitan

Tujuan: Membincangkan kuantiti terbitan dalam sebutan kuantiti asas dan unit asas S.I.

Arahan:

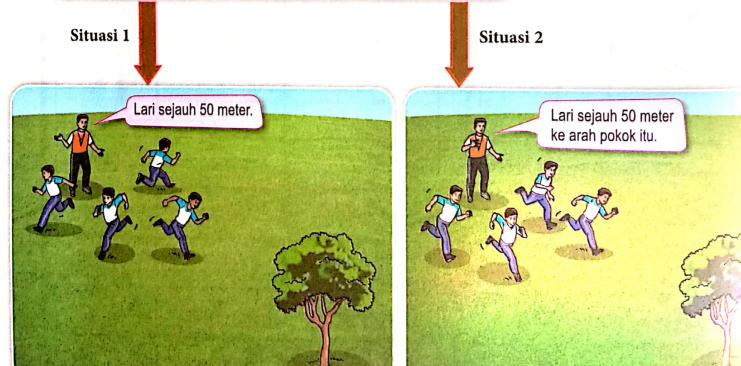
- 1. Jalankan aktiviti ini secara berpasangan dalam bentuk Think-Pair-Share.
- 2. Muat turun dan cetak Jadual 1.3 dalam laman sesawang yang diberikan di sebelah.
- 3. Bincangkan dan lengkapkan jadual tersebut.

Muat turun Jadual 1.3

http://bit.ly/ 20FiKXD

Jadual 1.3

Kuantiti terbitan dan simbolnya		Rumus	Sebutan dalam kuantiti asas	Sebutan dalam unit asas S.I.	Unit S.I. (Nama khas) jika ada
Luas					_
Isi padu				-	
Ketumpatan	ρ	$ \rho = \frac{m}{V} $	$\rho = \frac{m}{V} \qquad \frac{m}{l \times l \times l} = \frac{m}{l^3}$ $v = \frac{l}{t} \qquad \text{m s}^{-1}$		-
Halaju	ν	$v = \frac{l}{t}$			-
Pecutan	ecutan a		$\frac{l}{t \times t} = \frac{l}{t^2}$		-
Daya	F	$F = m \times a$		kg m s ⁻²	newton (N)
Momentum	p	$p = m \times v$	$m \times \frac{l}{t} = \frac{ml}{t}$		-
Tekanan	P	$P = \frac{F}{A}$		kg m ⁻¹ s ⁻²	pascal (Pa)
Tenaga atau Kerja	W	$W = F \times l$	$\frac{ml}{t^2} \times l = \frac{ml^2}{t^2}$		joule (J)
Cas	Q	$Q = I \times t$		A s	coulomb (C)


Kuantiti Skalar dan Kuantiti Vektor

Rajah 1.5 menunjukkan dua situasi semasa Pendidikan Jasmani. Dalam kedua-dua situasi tersebut, guru mengarahkan murid-murid untuk berlari sejauh 50 meter. Apakah perbezaan antara situasi 1 dan situasi 2?

Metrologi melibatkan penyelidikan yang teliti mengenai pengukuran dan piawaian. Ramai saintis menggunakan teknologi pengukuran yang sangat canggih untuk penentuan piawaian unit asas. Di negara kita, SIRIM diamanahkan untuk menyediakan semua piawaian pengukuran.

Rajah 1.5 Dua situasi semasa Pendidikan Jasmani

Kuantiti skalar ialah kuantiti fizik yang mempunyai magnitud sahaja manakala kuantiti vektor ialah kuantiti fizik yang mempunyai magnitud dan arah. Sekarang, cuba anda mengenal pasti situasi yang menghuraikan kuantiti skalar dan kuantiti vektor dalam Rajah 1.5 di atas.

Jadual 1.4 menunjukkan contoh-contoh kuantiti skalar dan kuantiti vektor. Apakah contoh kuantiti skalar dan kuantiti vektor lain yang anda tahu?

Jadual 1.4 Contoh-contoh kuantiti skalar dan vektor

Kuantiti skalar		Kuantiti vektor
Jarak	Masa	Sesaran
Luas	Isi padu	Halaju
Panjang	Laju	Daya
Kerja	Tenaga	Pecutan
Suhu	Ketumpatan	Momentum

Video kuantiti skalar dan kuantiti vektor

http://bit. ly/2FONuzX

Latihan Formatif

1.1

1. Rajah 1.6 menunjukkan Cikgu Fendi sedang membuat suatu pengukuran terhadap Wei Li.

Rajah 1.6

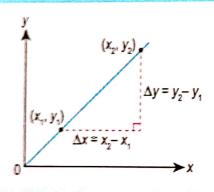
- (a) Nyatakan kuantiti fizik yang diukur.
- (b) Apakah unit asas, simbol unit, magnitud kuantiti fizik dan simbol kuantiti fizik yang diukur dalam situasi di Rajah 1.6?
- 2. (a) Apakah perbezaan antara kuantiti skalar dengan kuantiti vektor?
 - (b) Baca petikan berikut.

Puan Aishah hendak pergi ke Kota Kinabalu. Jarak dari rumahnya ke Kota Kinabalu ialah 333 km. Beliau memandu keretanya dengan laju 80 km j⁻¹ di lebuh raya. Beliau ingin tiba di Kota Kinabalu dalam masa 3 jam. Jadi beliau menambahkan laju kereta dengan pecutan 1.2 m s⁻².

Kenal pasti kuantiti skalar dan kuantiti vektor yang terlibat dalam situasi yang dihuraikan.

- 3. Rina dan rakan-rakannya telah menyertai Permainan Mencari Harta Karun yang diadakan sempena Hari Sains di sekolah mereka. Setiap kumpulan dikehendaki untuk mencari dan membawa beberapa objek yang disembunyikan di sekitar kawasan sekolah dalam masa 30 minit. Rajah 1.7 menunjukkan senarai yang diberikan kepada setiap kumpulan.
 - Bekas berisi sampel air kolam sebanyak 500 ml
 - □ Seketul batu unik yang berjisim 950 g
 - □ Tali berukuran 1.5 m
 - ☐ Kain khemah berukuran 7.2 m²

Rajah 1.7

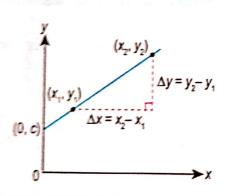

Kenal pasti kuantiti asas dan kuantiti terbitan dalam situasi di atas.

KPM

Penyiasatan Saintifik

Kita boleh memplot graf berdasarkan data penyiasatan saintifik untuk mentafsir bentuk graf dan seterusnya menentukan hubungan antara dua kuantiti fizik. Teliti bentuk-bentuk graf dan tafsiran yang diberikan.

Tafsiran Bentuk-bentuk Graf

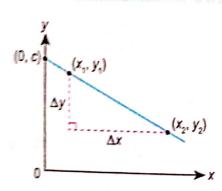


Jenis graf:

Garis lurus yang melalui asalan dan mempunyai kecerunan positif

Tafsiran graf:

- y berkadar terus dengan x
- Kecerunan graf, $m = \frac{\Delta y}{\Delta x}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$
- Persamaan garis lurus, y = mx

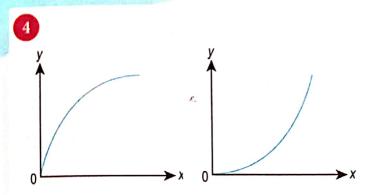


Jenis graf:

Garis lurus tidak melalui asalan dan mempunyai kecerunan positif

Tafsiran graf:

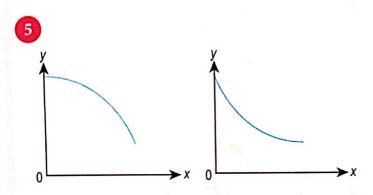
- y bertambah secara linear dengan x
- Kecerunan graf, $m = \frac{\Delta y}{\Delta x}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ • Pintasan paksi-y = c
- Persamaan garis lurus, y = mx + c


Jenis graf:

Garis lurus tidak melalui asalan dan mempunyai kecerunan negatif

Tafsiran graf:

- y berkurang secara linear dengan x
- Kecerunan graf, $m = \frac{\Delta y}{\Delta x}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ • Pintasan paksi-y = c
- Persamaan garis lurus, y = mx + c



Jenis graf:

Garis melengkung melalui asalan dan mempunyai kecerunan positif

Tafsiran graf:

• y bertambah dengan x

Jenis graf:

Garis melengkung tidak melalui asalan dan mempunyai kecerunan negatif

Tafsiran graf:

• y berkurang dengan x

Jenis graf:

- Garis melengkung dengan kecerunan negatif yang tidak memintas paksi.
- Garis lurus y melawan $\frac{1}{x}$ melalui asalan dan kecerunan positif

Tafsiran graf:

y berkadar songsang dengan x

Rajah 1.8 Contoh bentuk graf yang menunjukkan hubungan antara dua kuantiti fizik

(KIAK) (KBMM)

Tujuan: Membincangkan bentuk graf yang menunjukkan hubungan antara dua kuantiti fizik

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan dalam bentuk Think-Pair-Share.
- 2. Muat turun, cetak dan lengkapkan lembaran kerja daripada laman sesawang yang diberikan di sebelah.

Muat turun lembaran kerja Aktiviti 1.2

http://bit.ly/ 2yU1IdN

Menganalisis Graf untuk Mendapatkan Rumusan Siasatan

Secara amnya, terdapat lima perkara yang penting dalam menganalisis graf. Rajah 1.9 menunjukkan perkara-perkara tersebut.

0

Menyatakan hubungan antara dua pemboleh ubah yang diberi

Cara:

Mentafsirkan bentuk graf yang diperoleh.

Imbas kembali Kecerunan dan

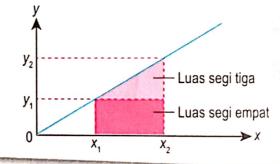
pintasan

2

Menentukan kuantiti fizik yang diwakili oleh kecerunan graf

Cara:

Hitungkan kecerunan graf, $m = \frac{\Delta y}{\Delta x}$ $= \frac{y_2 - y_1}{x_2 - x_1}$

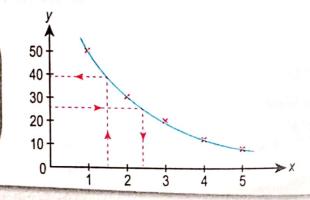


3

Menentukan luas di bawah graf yang mewakili suatu kuantiti fizik

Cara:

Hitungkan luas kawasan di bawah graf menggunakan rumus luas bentuk berkaitan.

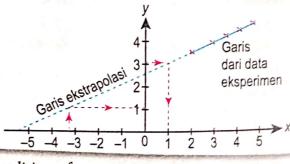


4

Menentukan nilai kuantiti fizik secara interpolasi

Cara:

Jika nilai x diberi, tentukan nilai y secara interpolasi dan sebaliknya.

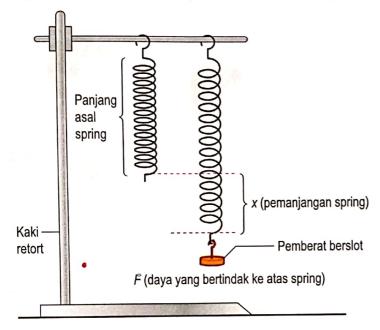


3

Membuat ramalan melalui ekstrapolasi

Cara:

- 1. Ekstrapolasikan graf.
- 2. Tentukan nilai x atau y yang berkaitan.



Tujuan: Memplot graf daripada set data yang diberi dan menganalisis graf

Farah menjalankan eksperimen dengan susunan radas yang ditunjukkan dalam Rajah 1.10 untuk menyiasat hubungan antara daya, F dengan pemanjangan spring, x. Dapatan eksperimen ditunjukkan dalam Jadual 1.5. Bantu Farah membuat rumusan penyiasatan mengenai eksperimen spring itu melalui analisis graf.

	Jadual 1.5
Daya, F/N	Pemanjangan spring, x / cm
0.5	0.8
1.0	1.6
1.5	2.4
2.0	3.2
2.5	4.0
3.0	4.8
3.5	5.6
4.0	6.4

Rajah 1.10

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- **2.** Lukiskan graf F melawan x.
- 3. Analisis graf anda untuk perkara-perkara yang dinyatakan di bawah:
 - (a) Nyatakan hubungan antara F dengan x.
 - (b) Hitungkan kecerunan graf, k. Tunjukkan pada graf itu bagaimana anda menentukan nilai k.
 - (c) Persamaan yang menghubung kait F dan x ialah F = kx, iaitu k ialah pemalar daya bagi spring itu. Tentukan nilai k dalam unit S.I.
 - (d) Luas di bawah graf mewakili kerja yang dilakukan untuk meregang spring. Tentukan kerja yang diperlukan untuk meregangkan spring sebanyak 5 cm.
 - (e) Tentukan nilai F apabila x = 3.5 cm.
 - (f) Ramalkan nilai x apabila F = 5.0 N.
- 4. Bentangkan graf dan analisis graf kumpulan anda.

Penyiasatan Saintifik dan Laporan Lengkap Eksperimen

Rajah 1.11 menunjukkan suatu situasi di sebuah taman permainan. Teliti perbualan antara tiga orang sahabat ini.

Imbas kembali

Kaedah saintifik dan laporan lengkap eksperimen

Rajah 1.11 Situasi di sebuah taman permainan

1.1

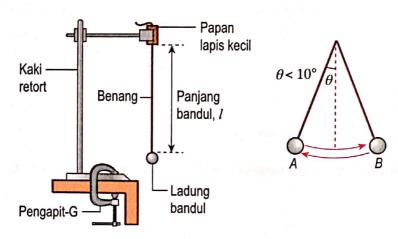
Inferens: Tempoh ayunan bandul bergantung kepada panjang talinya

Hipotesis: Semakin panjang benang bandul, semakin panjang tempoh ayunannya

Tujuan: Mengkaji hubungan panjang bandul, I dengan tempoh ayunan bandul, T

Pemboleh ubah

(a) Dimanipulasikan: Panjang bandul, l


(b) Bergerak balas: Tempoh ayunan bandul, T

(c) Dimalarkan: Jisim ladung bandul

Radas: Kaki retort, jangka sudut, ladung bandul, jam randik, pembaris meter dan pengapit-G

Bahan: Benang 100 cm dan dua keping papan lapis kecil

Prosedur:

Rajah 1.12

- 1. Susunkan radas seperti yang ditunjukkan dalam Rajah 1.12.
- 2. Laraskan panjang bandul, I = 20.0cm.

3

- Sesarkan ladung ke sisi dan lepaskan supaya ladung itu berayun dengan sudut yang kurang daripada 10°.
- 4. Ukur dan rekodkan masa, t_1 untuk 20 ayunan lengkap.
- 5. Ulangi langkah 4 dan rekodkan masa sebagai t_2 .
- 6. Hitungkan nilai masa purata, $t_{purata} = \frac{(t_1 + t_2)}{2}$.
- 7. Hitungkan tempoh ayunan bandul lengkap, $T = \frac{t_{purata}}{20}$ dan nilai T^2 .
- 8. Ulangi langkah 2 hingga 7 dengan panjang bandul, l = 30.0 cm, 40.0 cm, 50.0 cm, 60.0 cm dan 70.0 cm.
- 9. Rekodkan data dalam Jadual 1.6.

Keputusan:

Jadual 1.6

		,			
Panjang bandul,	Masa yang dia	mbil untuk 20 ay	T/s	T^2/s^2	
1 / cm	t ₁	t ₂	t _{purata}	位数	
20.0		responsed or these			
30.0					
40.0	(pa)				
50.0					
60.0					
70.0					

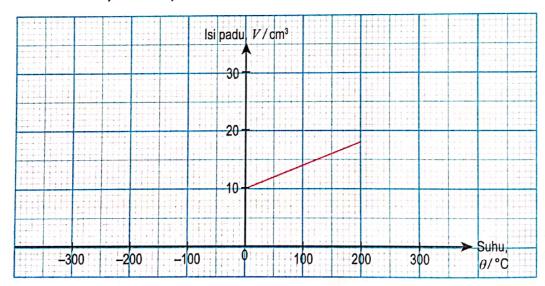
Analisis data:

- 1. Plotkan graf T melawan l dan graf T^2 melawan l pada kertas graf yang berlainan.
- 2. Nyatakan bentuk graf dan hubungan antara pemboleh ubah bagi kedua-dua graf yang anda plot.
- 3. Tentukan kecerunan graf, m bagi graf T^2 melawan l. Nyatakan nilai m dalam unit S.I. Tunjukkan dengan jelas cara anda memperoleh jawapan anda.
- 4. Diberi $T^2 = 4\pi^2 \frac{l}{g}$ yang mana g ialah pecutan graviti Bumi. Hubung kait kecerunan, m dengan nilai g dan seterusnya tentukan nilai g dalam eksperimen ini.

Kesimpulan:

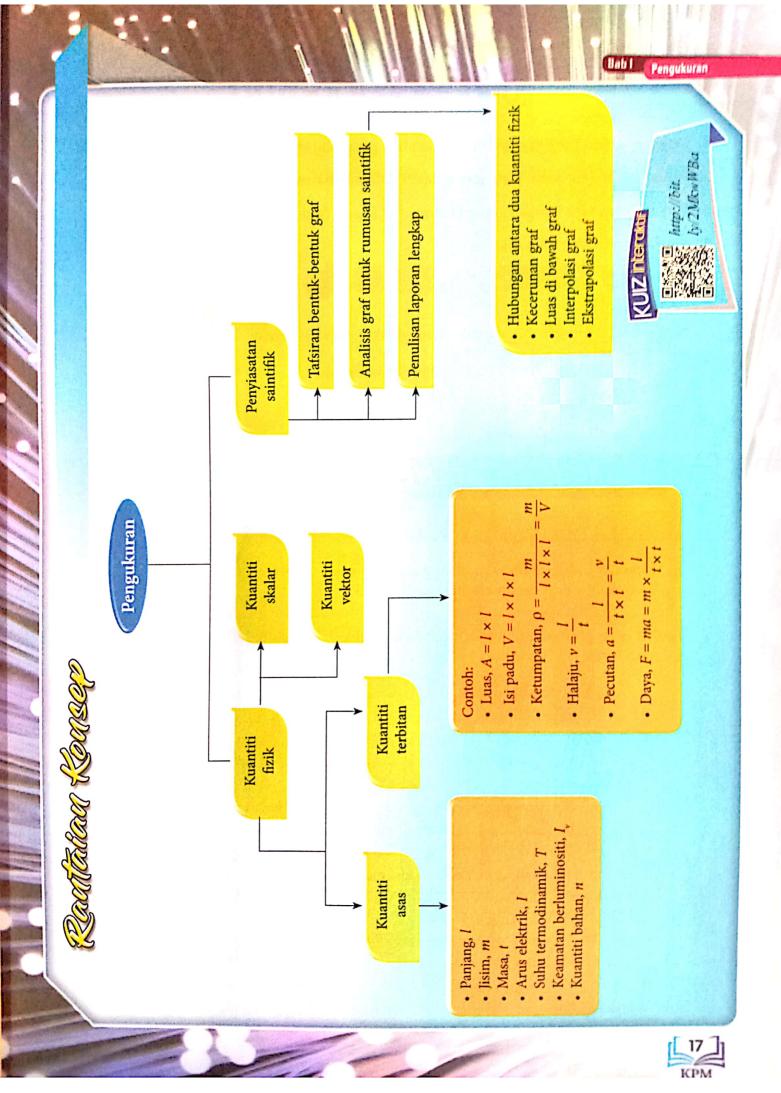
Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.


Perbincangan:

- 1. Mengapakah masa untuk 20 ayunan lengkap perlu diambil dalam eksperimen ini?
- 2. Mengapakah pengukuran masa 20 ayunan perlu diulang?
- 3. Nyatakan satu langkah berjaga-jaga untuk meningkatkan kejituan eksperimen ini.
- 4. Bandingkan nilai g daripada eksperimen ini dengan nilai piawai bagi g, iaitu 9.81 m s⁻². Berikan justifikasi anda kepada perbezaan nilai yang diperoleh.

Latihan Formatif


1.2

- 1. Graf memainkan peranan yang penting dalam penyiasatan saintifik.
 - (a) Apakah kegunaan graf?
 - (b) Terangkan perkara-perkara utama dalam proses memplot graf.
- 2. Rajah 1.13 menunjukkan graf yang dihasilkan dalam satu kajian yang menyiasat hubungan antara isi padu, V dengan suhu, θ bagi suatu gas berjisim tetap. Berdasarkan graf yang diberikan dalam Rajah 1.13, jawab soalan-soalan berikut.

Rajah 1.13

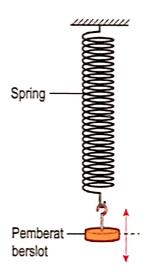
- (a) Apakah yang berlaku kepada V apabila θ bertambah?
- (b) Tentukan nilai θ apabila isi padunya sama dengan sifar. Tunjukkan pada graf itu bagaimana anda menentukan nilai θ. 🦚
- (c) Tentukan nilai V apabila $\theta = 300$ °C. Tunjukkan pada graf itu bagaimana anda menentukan nilai V. 🧠



- Perkara baharu yang saya pelajari dalam bab pengukuran ialah 2. Perkara paling menarik yang saya pelajari dalam bab pengukuran ialah 3. Perkara yang saya masih kurang fahami atau kuasai ialah 4. Prestasi saya dalam bab ini. Muat turun dan cetak Sangat Refleksi Kendiri Bab 1 Kurang baik http://bit.
- untuk meningkatkan prestasi saya 5. Saya perlu dalam bab ini.

Penilaian Prestasi

- 1. (a) Nyatakan tujuh kuantiti asas fizik dan unit S.I. yang berkaitan.
 - (b) Kuasa, P boleh ditakrifkan menggunakan persamaan $P = \frac{\text{Daya} \times \text{Panjang}}{\text{Masa}}$. Terbitkan unit P dalam sebutan unit asas S.I.
- 2. Rajah 1 ialah graf yang diperoleh apabila laju sebuah kereta diuji. Graf laju, v diplotkan melawan masa, t.



Rajah 1

- (a) Tentukan kecerunan graf v melawan t.
- (b) Tentukan pintasan graf apabila t = 0 s.
- (c) Nyatakan hubungan antara laju, v dengan masa, t.

3. Hashim menjalankan satu eksperimen untuk menyiasat hubungan antara jisim pemberat berslot, m dengan tempoh ayunan, T bagi suatu spring seperti yang ditunjukkan dalam Rajah 2.

Rajah 2

Hashim mengambil masa, *t* bagi 20 ayunan lengkap untuk jisim pemberat berslot yang berbeza. Set data yang diperoleh ditunjukkan dalam Jadual 1.

juuuui 1	Ja	dual	1
----------	----	------	---

Jisim pemberat, m/g	20	40	60	80	100
Masa 20 ayunan, t/s	26.0	36.0	44.4	51.0	57.2
Tempoh, T					

 T^2

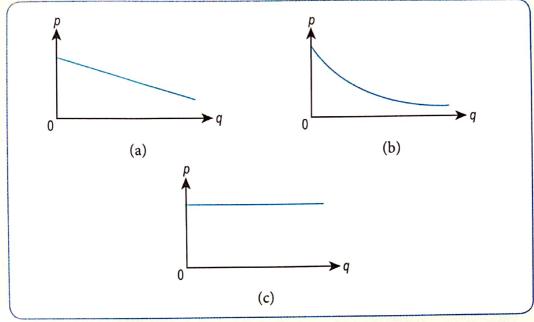
- (a) Lengkapkan Jadual 1 dengan menghitungkan data-data terbitan T dan T^2 . Nyatakan unit-unit yang sesuai untuk kedua-dua kuantiti fizik tersebut.
- (b) Plotkan graf T^2 lawan m dengan memilih skala-skala yang sesuai. Lukiskan garis penyuaian terbaik pada graf. \clubsuit
- (c) Tentukan kecerunan garis lurus yang telah anda lukiskan. Tunjukkan dengan jelas cara anda memperolehnya. 🧢
- (d) Jika eksperimen ini dijalankan di permukaan Bulan, apakah kemungkinan yang akan berlaku kepada kecerunan graf itu? 🧠
- (e) Bagaimanakah ayunan spring bersama pemberat ini boleh dijadikan satu alat pengukur masa dalam unit saat? $(T^2 = 4\pi^2 \frac{m}{k})$

4. Cikgu Ahmad mengukur masa yang dicatatkan oleh lima orang muridnya semasa latihan lumba lari 400 m di padang sekolah. Jadual 2 menunjukkan masa yang dicatatkan.

Jadual 2

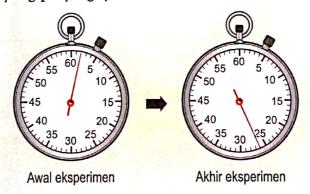
Murid	Masa, t/s	Laju, v / m s ⁻¹
A	58.79	
В	60.06	
С	57.68	
D	59.87	
E	57.99	

- (a) Lengkapkan Jadual 2 dengan menghitungkan laju lima orang murid tersebut.
- (b) Cadangkan alat yang mungkin digunakan oleh Cikgu Ahmad untuk mengukur masa dalam situasi ini. 🧢
- (c) Berdasarkan Jadual 2, murid manakah yang berlari dengan paling pantas? 🣪
- (d) Nyatakan satu langkah penambahbaikan untuk meningkatkan kejituan data catatan masa dalam Jadual 2.
- 5. Jadual 3 menunjukkan rumus untuk tiga kuantiti fizik.


Jadual 3

Kuantiti fizik	Rumus
Daya, F	$F = m \times a$
Luas, A	$A = l \times l$
Masa, T	

- (a) Andaikan daya, F, luas, A dan masa, T dipilih sebagai kuantiti asas fizik yang baharu, manakala jisim, m dan panjang, l dipilih sebagai kuantiti terbitan yang baharu, terbitkan jisim, m dan panjang, l dalam sebutan F, A dan T.
- (b) Apakah kekangan yang akan dihadapi oleh ahli fizik jika FAT dijadikan sebagai kuantiti fizik yang baharu? 🤲



6. Rajah 3 menunjukkan graf yang diperoleh dalam beberapa eksperimen. Berdasarkan bentuk setiap graf, tentukan hubungan antara dua kuantiti fizik p dan q.

Rajah 3

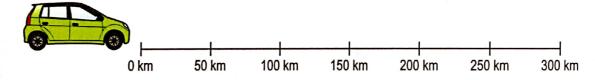
7. Rajah 4 menunjukkan bacaan jam randik mekanikal pada awal dan akhir suatu eksperimen. Jam randik ini digunakan untuk mengukur masa 20 ayunan lengkap suatu bandul ringkas yang panjangnya, *l*.

Rajah 4

- (a) (i) Berapakah masa yang diambil untuk bandul itu melengkapkan 20 ayunan?
 - (ii) Mengapakah masa untuk 20 ayunan lengkap perlu diambil? 🧬
 - (iii) Cadangkan dua langkah penambahbaikan untuk eksperimen ini. 🧠
- (b) (i) Tentukan tempoh ayunan lengkap, T, bagi bandul ini.
 - (ii) Hubungan antara panjang, l, dan tempoh, T, suatu bandul ringkas diberikan melalui persamaan, $l=(\frac{g}{4\pi^2})T^2$.

Dengan menggunakan nilai T dalam (b)(i), hitungkan panjang bandul, l itu. $= [g = 10 \text{ m s}^{-2}]$

8. Hukum Kegravitian Semesta Newton boleh dinyatakan dalam bentuk persamaan berikut:


$$F = \frac{GMm}{r^2}$$

F ialah daya
G ialah pemalar kegravitian
M dan m ialah jisim
r ialah jarak antara kedua-dua jasad

- (a) Berdasarkan persamaan tersebut, nyatakan satu contoh
 - (i) kuantiti asas,
- (ii) kuantiti terbitan, dan
- (iii) kuantiti vektor.
- (b) Terbitkan unit G dalam sebutan unit asas S.I. 🬳

9. Seorang pemandu ingin tahu penggunaan petrol oleh enjin kereta bagi setiap 1 km untuk perjalanan sejauh 300 km pada kelajuan malar. Beliau memasang alat pengukur isi padu petrol dalam keretanya untuk mencatatkan bacaan baki isi padu petrol pada setiap jarak 50 km dari titik permulaan. Jadual 4 menunjukkan bacaan-bacaan yang diperolehnya.

Rajah 5

Jadual 4

Jarak, s / km	50	100	150	200	250	300
Isi padu petrol, V / liter	40	34	28	23	16	9

- (a) Pemandu tersebut terlupa mencatatkan isi padu petrol pada titik permulaan perjalanan. Bagaimanakah pemandu tersebut boleh menganggarkan nilai isi padu petrol keretanya pada permulaan perjalanan?
- (b) Tentukan penggunaan isi padu petrol oleh enjin kereta tersebut bagi 80 km pertama.

 Tunjukkan kaedah anda dengan terperinci.
- (c) Jika penggunaan isi padu petrol enjin kereta bagi setiap 50 km dapat dijimatkan sebanyak 10%, tunjukkan nilai-nilai baharu V dan s dalam sebuah jadual.
- (d) Lukiskan graf V melawan s yang baharu. 🥮

DAYA DAN GERAKAN I Bagaimanakah gerakan linear sesuatu objek dikaji? Apakah yang menyebabkan perubahan keadaan gerakan suatu objek? Mengapakah Hukum-hukum Gerakan Newton penting dalam kajian mekanik gerakan suatu objek? Marilah Kita Mempelajari 2.1 Gerakan Linear 2.2 Graf Gerakan Linear 2.3 Gerakan Jatuh Bebas 2.4 Inersia 2.5 Momentum 2.6 Daya 2.7 Impuls dan Daya Impuls 2.8 Berat

2. Gerakan Linear

Gambar foto 2.1 menunjukkan pelbagai jenis objek yang bergerak. Bagaimanakah anda boleh menghuraikan pergerakan dalam kehidupan harian? Pergerakan dalam satu lintasan yang lurus dinamakan gerakan linear.

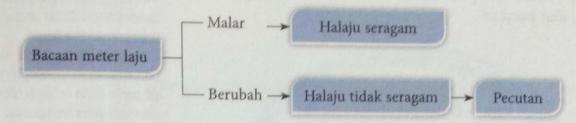
Gambar foto 2.1 Pelbagai jenis objek yang bergerak

Gerakan linear boleh dihuraikan dari segi **jarak**, **sesaran**, **laju**, **halaju** dan **pecutan**. Rajah 2.1 menunjukkan sebuah teksi yang sedang menunggu penumpang di tempat letak kereta. Kedudukan teksi itu tidak berubah dengan masa. Justeru, teksi itu dikatakan berada dalam keadaan **pegun**.

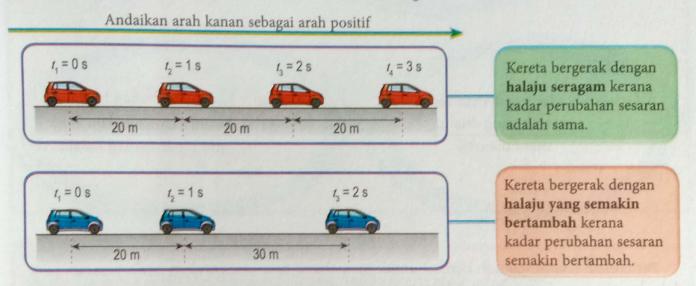
Rajah 2.1 Teksi yang pegun

Rajah 2.2 Perjalanan dari Bagan Datoh ke Sungkai

Puan Chong hendak menaiki teksi itu dari Bagan Datoh ke Sungkai. Rajah 2.2 menunjukkan paparan aplikasi peta yang menunjukkan bahawa teksi itu perlu bergerak melalui laluan berwarna biru dengan panjang lintasan sejauh 83.00 km. Setelah tiba di Sungkai, kedudukan teksi itu ialah 57.22 km ke Timur dari Bagan Datoh. Sebenarnya, nilai 83.00 km dan 57.22 km ke Timur masing-masing ialah jarak dan sesaran bagi pergerakan teksi tersebut. Jadual 2.1 menunjukkan perbandingan antara jarak dengan sesaran.

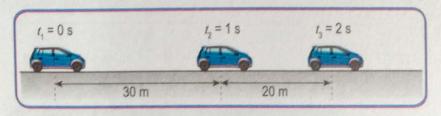

Jadual 2.1 Perbandingan antara jarak dengan sesaran

Jarak	Sesaran
Panjang lintasan yang dilalui oleh pergerakan suatu objek	Jarak terpendek antara kedudukan awal dengan kedudukan akhir pergerakan suatu objek pada satu arah tertentu
Nilainya bergantung pada laluan yang diambil oleh pergerakan objek itu.	Nilainya sama dengan panjang garis lurus antara kedudukan awal dengan kedudukan akhir.
Kuantiti skalar	Kuantiti vektor



Semasa menaiki teksi, Puan Chong mendapati bahawa bacaan meter laju teksi kadangkala malar dan kadangkala berubah-ubah walaupun di jalan raya yang lurus. Pemerhatian tersebut boleh dirumuskan seperti dalam Rajah 2.3.

Rajah 2.3 Bacaan meter dan pergerakan kereta


Rajah 2.4 menggambarkan perbezaan pergerakan antara halaju seragam dengan tidak seragam sebuah kereta. Perhatikan sesaran dan sela masa kedua-dua kereta tersebut. Andaikan pergerakan ke kanan adalah positif, dan ke kiri adalah negatif.

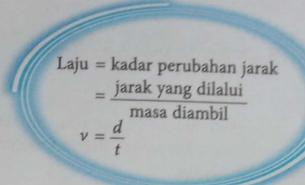
Rajah 2.4 Pergerakan dengan halaju seragam dan tidak seragam

Dalam Rajah 2.4, sesaran kereta biru bertambah untuk sela masa yang sama. Maka, kereta biru bergerak dengan halaju yang bertambah. Dalam hal ini, kereta biru dikatakan mengalami pecutan pada arah yang sama dengan arah gerakan kereta.

Sebaliknya, jika sesaran berkurang untuk sela masa yang sama seperti yang ditunjukkan dalam Rajah 2.5, kereta bergerak dengan halaju yang berkurang. Kereta mengalami pecutan tetapi pada arah yang bertentangan dengan arah gerakan kereta.

Rajah 2.5 Pergerakan dengan halaju yang berkurang

Contoh pergerakan dengan halaju tidak seragam


http://bit.

ly/2Y72dkl

Menentukan Jarak, Sesaran, Laju, Halaju dan Pecutan

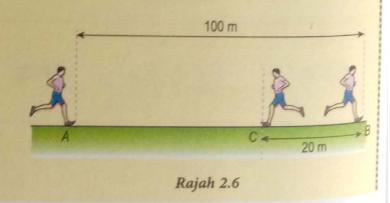
Pergerakan suatu objek dikaji dengan menentukan nilai jarak, sesaran, laju, halaju dan pecutan. Berikut ialah cara menentukan laju, halaju dan pecutan:

Halaju = kadar perubahan sesaran $= \frac{\text{sesaran yang dilalui}}{\text{masa diambil}}$ $v = \frac{s}{t}$

Pecutan = kadar perubahan halaju
$$= \frac{\text{halaju akhir - halaju awal}}{\text{masa perubahan halaju}}$$

$$a = \frac{v - u}{t}$$

Perhatikan contoh-contoh berikut untuk memahami cara menentukan jarak, sesaran, laju, halaju dan pecutan dalam gerakan linear.


Contoh 1

Rajah 2.6 menunjukkan pergerakan Radzi yang berlari dari A ke B kemudian berpatah balik ke C. Jumlah masa yang diambil olehnya ialah 20 s.

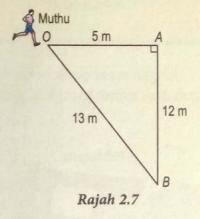
Tentukan

- (a) jarak,
- (b) sesaran,
- (c) laju, dan
- (d) halaju

bagi larian Radzi.

Penyelesaian:

- (a) Jarak = Panjang lintasan yang dilalui = AB + BC = 100 m + 20 m = 120 m
- (b) Sesaran = Panjang antara kedudukan awal dengan kedudukan akhir pada arah tertentu = AB + BC = (100 m) + (-20 m) = 80 m (ke kanan)
- (c) Laju = $\frac{\text{Jarak dilalui}}{\text{Masa yang diambil}}$ $= \frac{120 \text{ m}}{20 \text{ s}}$ $= 6 \text{ m s}^{-1}$
- (d) Halaju = $\frac{\text{Sesaran}}{\text{Masa yang diambil}}$ = $\frac{80 \text{ m}}{20 \text{ s}}$ = 4 m s^{-1} (ke kanan)


Contoh 2

Muthu bergerak dari *O* ke *B* melalui lintasan *OAB* seperti yang ditunjukkan dalam Rajah 2.7. Masa yang diambil ialah 15 s. Tentukan

- (a) jarak,
- (b) sesaran,
- (c) laju, dan
- (d) halaju bagi pergerakan Muthu.

Penyelesaian:

- (a) Jarak = OA + AB= 5 m + 12 m = 17 m
- (b) Sesaran = Garis lurus paling pendek dari O ke B= OB= $\sqrt{5^2 + 12^2}$ = 13 m (pada arah OB)

(c) Laju Muthu =
$$\frac{\text{Jarak}}{\text{Masa}}$$

= $\frac{17 \text{ m}}{15 \text{ s}}$
= 1.13 m s⁻¹

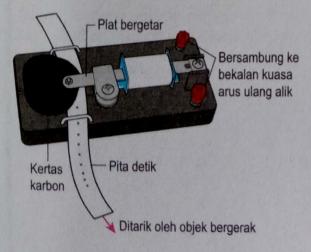
(d) Halaju Muthu =
$$\frac{\text{Sesaran}}{\text{Masa}}$$

= $\frac{13 \text{ m}}{15 \text{ s}}$
= 0.87 m s⁻¹ (pada arah *OB*)

Contoh 3

Selepas mendarat di atas landasan, sebuah kapal terbang diperlahankan supaya halajunya berkurang daripada 75 m s⁻¹ kepada 5 m s⁻¹ dalam masa 20 s. Berapakah pecutan kapal terbang itu?

Penyelesaian:


Halaju awal, $u = 75 \text{ m s}^{-1}$, halaju akhir, $v = 5 \text{ m s}^{-1}$, masa, t = 20 s

Pecutan,
$$a = \frac{v - u}{t}$$

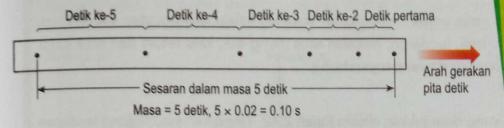
= $\frac{5 - 75}{20}$
= -3.5 m s⁻²

Fail INFO

Nyahpecutan ialah keadaan pengurangan halaju gerakan satu objek.

Jangka masa detik bersama pita detik seperti yang ditunjukkan dalam Rajah 2.8 boleh digunakan untuk mengkaji gerakan linear suatu objek di dalam makmal.

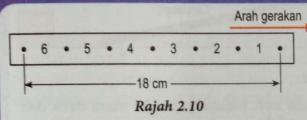
Rajah 2.8 Jangka masa detik dan pita detik


Jangka masa detik yang dikendalikan oleh arus ulang-alik berfrekuensi 50 Hz membuat 50 titik dalam masa 1 saat pada pita detik.

Sela masa antara dua titik berturutan dikenali sebagai 1 detik.

Oleh itu, 1 detik:
$$\frac{1}{50}$$
 s = 0.02 s
5 detik: 5×0.02 s = 0.10 s
10 detik: 10×0.02 s = 0.2 s

Rajah 2.9 menunjukkan sebahagian daripada pita detik yang ditarik oleh suatu objek yang bergerak secara linear.


Fail INFO

Apabila suatu objek bergerak sepanjang satu garis lurus dan tidak berpatah balik, jarak dan sesarannya mempunyai nilai yang sama.

Rajah 2.9 Sebahagian daripada pita detik yang ditarik oleh objek

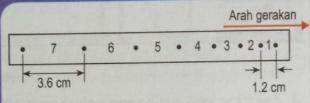
Pita detik merekod sesaran bagi objek bergerak dan juga masa yang diambil. Seterusnya, halaju dan pecutan boleh dihitung. Rajah 2.10 dan 2.11 menunjukkan kaedah menghitung halaju dan pecutan bagi gerakan linear suatu objek.

Menghitung halaju

Sesaran, s = 18 cm

Masa yang diambil,
$$t = 6$$
 detik
= 6×0.02 s
= 0.12 s

Halaju,
$$v = \frac{s}{t}$$


$$= \frac{18 \text{ cm}}{0.12 \text{ s}}$$

$$= 150 \text{ cm s}^{-1}$$

Kita telah mengetahui kaedah menghitung halaju dan pecutan bagi gerakan linear suatu objek dengan merujuk kepada titik-titik pada pita detik.

Marilah kita jalankan aktiviti menggunakan jangka masa detik dan pita detik untuk menentukan halaju serta pecutan troli.

Menghitung pecutan

Rajah 2.11

Halaju awal,
$$u = \text{halaju pada detik pertama}$$

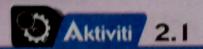
= $\frac{1.2 \text{ cm}}{0.02 \text{ s}}$
= 60 cm s^{-1}

Halaju akhir,
$$v =$$
 halaju pada detik ketujuh
$$= \frac{3.6 \text{ cm}}{0.02 \text{ s}}$$
$$= 180 \text{ cm s}^{-1}$$

Masa perubahan halaju

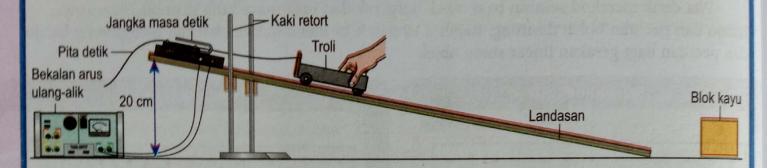
t =
$$(7 - 1)$$
 detik
= 6 detik
= 6×0.02 s
= 0.12 s

Pecutan,
$$a = \frac{v - u}{t}$$


$$= \frac{(180 - 60) \text{ cm s}^{-1}}{0.12 \text{ s}}$$

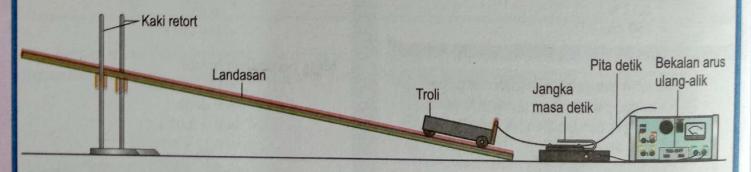
$$= 1 000 \text{ cm s}^{-2}$$

2.1.2


Tujuan: Menggunakan pita detik untuk menentukan sesaran, halaju dan pecutan sebuah troli

Radas: Jangka masa detik, troli, landasan, bekalan arus ulang-alik, kaki retort dan blok kayu

Bahan: Pita detik berkarbon dan dawai penyambung

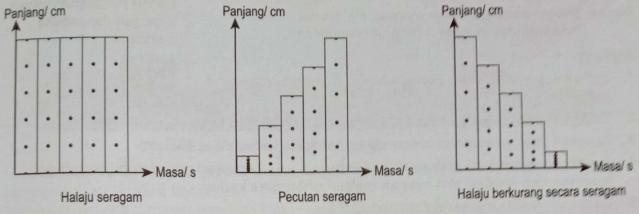

Arahan:

1. Susunkan radas seperti yang ditunjukkan dalam Rajah 2.12. Tinggikan satu hujung landasan sehingga ketinggian 20 cm supaya troli itu boleh bergerak menuruni landasan.

Rajah 2.12

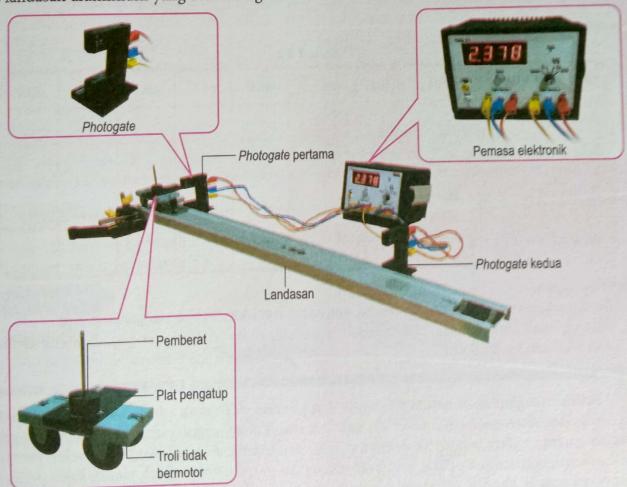
- 2. Lekatkan pita detik yang panjangnya 100 cm pada troli, hidupkan jangka masa detik dan lepaskan troli itu. Perhatikan pita detik yang diperoleh.
- 3. Daripada pita detik itu, tentukan sesaran dan hitungkan halaju purata troli itu.
- 4. Tinggikan lagi hujung landasan supaya troli boleh bergerak dengan halaju yang semakin tinggi menuruni landasan itu.
- 5. Ulangi langkah 2 dan 3. Kemudian, hitungkan pecutan troli.
- 6. Susun semula radas seperti yang ditunjukkan dalam Rajah 2.13.

Rajah 2.13


- 7. Tolak troli dari bawah landasan tersebut dan biarkannya bergerak ke atas landasan.
- 8. Hentikan troli di atas landasan sebaik sahaja troli mula menuruni landasan.
- 9. Daripada pita detik yang diperoleh, tentukan pecutan troli itu.

Perbincangan:

Bincangkan pergerakan bagi pita detik yang diperoleh.



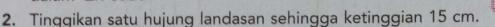
Jika pita detik yang panjang digunakan, lebih banyak titik dapat dirakam pada pita detik itu. Dalam hal ini, pita detik itu boleh dibahagi kepada jalur-jalur yang mempunyai bilangan detik yang sama. Jalur-jalur itu dipotong dan dilekat sebelah-menyebelah di atas kertas graf untuk membentuk carta pita seperti yang ditunjukkan dalam Rajah 2.14.

Rajah 2.14 Carta pita detik

Selain daripada jangka masa detik, **sistem** *photogate* dan pemasa elektronik boleh digunakan untuk mengkaji pergerakan linear dengan lebih jitu. Rajah 2.15 menunjukkan sistem *photogate* dan pemasa elektronik yang digunakan bersama troli tidak bermotor yang bergerak di atas landasan aluminium yang dicondongkan.

Rajah 2.15 Sistem photogate dan pemasa elektronik

Tujuan: Menggunakan sistem photogate dan pemasa elektronik untuk menentukan halaju


dan pecutan pergerakan troli

Radas: Sistem photogate dan pemasa elektronik, troli,

landasan dan pelaras ketinggian landasan

Arahan:

1. Sediakan susunan radas dengan merujuk kepada manual di dalam *QR code*.

- 3. Laraskan jarak pemisahan antara dua photogate kepada s=40.0 cm.
- 4. Laraskan suis pemasa elektronik ke simbol _ . Lepaskan troli dari hujung tinggi landasan dan sambut troli setelah melalui photogate kedua.
- 5. Catatkan jumlah masa, t dalam Jadual 2.2.
- 6. Keluarkan photogate pertama.
- 7. Laraskan suis pada pemasa elektronik kepada ____. Lepaskan troli sekali lagi dari titik asal yang sama.
- 8. Catatkan sela masa, Δt dalam Jadual 2.2.
- **9.** Ulangi langkah 3 hingga 8 untuk s = 50.0 cm, 60.0 cm, 70.0 cm dan 80.0 cm.

Keputusan:

Jadual 2.2

Jarak pemisahan antara dua photogate, s / cm	40.0	50.0	60.0	70.0	80.0
Jumlah masa, t/s					
Sela masa, Δt /s					
Halaju akhir, $v = \frac{5}{\Delta t} / \text{ cm s}^{-1}$					
Pecutan, $a = \frac{v}{t}$ / cm s ⁻²					

Perbincangan:

- 1. Berdasarkan keputusan dalam jadual, tentukan pecutan purata pergerakan troli.
- 2. Mengapakah jumlah masa, t bertambah tetapi sela masa, Δt berkurang apabila s bertambah dari 40.0 cm ke 80.0 cm?

Kaedah menggunakan sistem *photogate* dan pemasa elektronik adalah lebih jitu kerana tiada pita detik dilekatkan pada troli. Oleh itu, gerakan troli dalam sistem *photogate* kurang mengalami masalah geseran antara pita detik dengan jangka masa detik. Pemasa elektronik boleh mengesan sela masa sehingga kejituan 0.001 saat berbanding dengan 0.02 saat untuk jangka masa detik. Sela masa yang sangat pendek ini membolehkan kita menentukan halaju dan pecutan troli dengan lebih jitu.

Manual penggunaan sistem

http://bit.

ly/2FFiKC4

photogate dan pemasa

elektronik

Menyelesaikan Masalah Gerakan Linear dengan Menggunakan Persamaan Gerakan Linear

Rajah 2.16 menunjukkan sebuah kereta yang bergerak dengan pecutan seragam.

Rajah 2.16 Kereta yang bergerak dengan pecutan seragam

Lima kuantiti fizik dalam gerakan linear dengan pecutan seragam boleh diwakili dengan empat persamaan gerakan linear.

Persamaan gerakan linear pertama

Pecutan =
$$\frac{\text{Halaju akhir - halaju awal}}{\text{Masa perubahan halaju}}$$
$$a = \frac{v - u}{t}$$
$$at = v - u$$
$$v = u + at$$
(1)

Persamaan gerakan linear ketiga

Gantikan persamaan (1) ke persamaan (2)

$$s = \frac{1}{2}[u + (u + at)]t$$

$$s = \frac{1}{2}(2u + at)t$$

$$s = ut + \frac{1}{2}at^{2}$$
 (3)

Persamaan gerakan linear kedua

Sesaran = Halaju purata × masa
Sesaran =
$$\left(\frac{\text{Halaju awal + halaju akhir}}{2}\right)$$
 × masa
 $s = \frac{1}{2}(u + v)t$ ______(2)

Persamaan gerakan linear keempat

Kuasa duakan persamaan (1)

$$v^{2} = (u + at)^{2}$$

$$v^{2} = u^{2} + 2uat + a^{2}t^{2}$$

$$v^{2} = u^{2} + 2a\left(ut + \frac{1}{2}at^{2}\right)$$

$$v^{2} = u^{2} + 2as$$

$$(4)$$
Daripada persamaan (3)
$$s = ut + \frac{1}{2}at^{2}$$

Contoh 1

Sebuah bas sekolah bergerak dari keadaan pegun dengan pecutan 2 m s-2 selama 5 s. Hitungkan halajunya selepas 5 s.

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

Halaju awal,
$$u = 0 \text{ m s}^{-1}$$

Masa, $t = 5 \text{ s}$
Pecutan, $a = 2 \text{ m s}^{-2}$
Halaju akhir, $v = ?$

$$v = u + at$$

$$\nu = 0 + (2)(5)$$

= 10 m s⁻¹

Contoh 2

Ketika sebuah kereta lumba melalui trek yang lurus, halajunya ialah 40 m s⁻¹. Selepas 3 saat, kereta lumba tersebut telah mencapai 50 m s⁻¹. Hitungkan sesaran yang telah dilalui.

Penyelesaian:

Halaju awal,
$$u = 40 \text{ m s}^{-1}$$

Halaju akhir, $v = 50 \text{ m s}^{-1}$
Masa, $t = 3 \text{ s}$
Sesaran, $s = ?$

$$s = \frac{1}{2} (u + v)t$$

$$= \frac{1}{2} (40 + 50)(3)$$

$$= 135 \text{ m}$$

Contoh 3

Seorang atlet memulakan larian daripada keadaan pegun dan mencapai halaju maksimum setelah memecut secara seragam selama 8.0 s. Jika sesaran yang dicapai oleh atlet itu ialah 40 m, tentukan pecutan beliau dalam larian tersebut.

Penyelesaian:

Halaju awal,
$$u = 0 \text{ m s}^{-1}$$

Masa, $t = 8.0 \text{ s}$
Sesaran, $s = 40 \text{ m}$
Pecutan, $a = ?$

$$s = ut + \frac{1}{2} at^{2}$$

$$40 = (0)(8) + \frac{1}{2}(a)(8^{2})$$

$$40 = 0 + \frac{64a}{2}$$

$$a = \frac{2 \times 40}{64}$$

$$= 1.25 \text{ m s}^{-2}$$

Contoh 4

Maria mengayuh basikal pada halaju 8 m s⁻¹. Dia menekan brek basikal secara tiba-tiba dan berjaya berhenti setelah bergerak sejauh 2 m. Berapakah pecutan yang dialami oleh Maria dan basikalnya?

Penyelesaian:

Halaju awal,
$$u = 8 \text{ m s}^{-1}$$

Halaju akhir, $v = 0 \text{ m s}^{-1}$
Sesaran, $s = 2 \text{ m}$
Pecutan, $a = ?$

$$v^2 = u^2 + 2as$$

$$0^2 = 8^2 + 2(a)(2)$$

$$-4a = 64$$

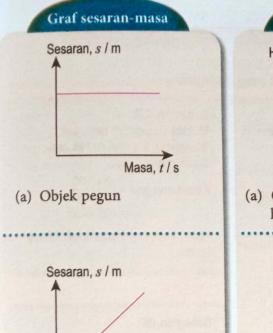
$$a = -16 \text{ m s}^{-2}$$

Tanda negatif menunjukkan Maria mengalami pecutan 16 m s⁻² dalam arah bertentangan dengan gerakan basikal.

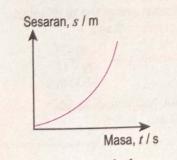
Latihan Formatif

Jelaskan perbezaan antara
 jarak dengan sesaran

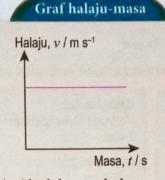
- (b) laju dengan halaju
- 2. Sebuah kereta yang bergerak di atas jalan raya dengan halaju 30 m s⁻¹ mengalami pengurangan halaju dengan kadar seragam sehingga berhenti selepas 5 s. Berapakah pecutan yang dialami oleh kereta itu?


2.1

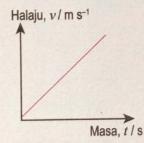
3. Aina menunggang sebuah alat pengangkutan peribadi pintar di Taman Botani Perdana. Alat itu memecut secara seragam daripada halaju 1 m s⁻¹ ke halaju 5 m s⁻¹ dalam masa 0.5 minit. Hitungkan sesaran alat itu.

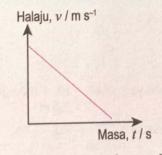

2.2 Graf Gerakan Linear

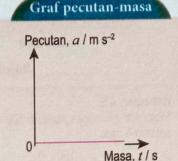
Bagi gerakan linear, pentafsiran graf adalah penting bagi memahami jenis gerakan linear suatu objek. Rajah 2.17 menunjukkan pentafsiran jenis gerakan daripada graf.

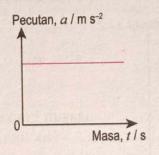


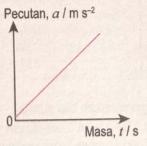
(b) Objek bergerak dengan halaju seragam


Masa, t/s


(c) Objek bergerak dengan halaju bertambah


(a) Objek bergerak dengan halaju seragam


(b) Objek bergerak dengan pecutan seragam


(c) Objek bergerak dengan halaju berkurang secara seragam

(a) Objek bergerak dengan pecutan sifar

(b) Objek bergerak dengan pecutan seragam

(c) Objek bergerak dengan pecutan bertambah


Bagi graf sesaran-masa: Kecerunan graf = halaju Bagi graf halaju-masa: Kecerunan graf = pecutan Luas di bawah graf = sesaran

Rajah 2.17 Pentafsiran jenis gerakan linear daripada graf

Menganalisis Graf Sesaran-Masa untuk Menentukan Jarak, Sesaran dan Halaju Rajah 2.18 menunjukkan titik asal dan titik akhir bagi sebuah motosikal yang ditunggang ke arah kanan (arah positif) dan kemudian berpatah balik ke kiri (arah negatif). Graf sesaran-masa dalam Rajah 2.19 menunjukkan gerakan linear motosikal tersebut.

Rajah 2.18 Pergerakan sebuah motosikal yang ditunggang

Bahagian AB:

Motosikal ditunggang sejauh 100 m ke kanan selama 5 saat.

Kecerunan graf =
$$\frac{100 - 0}{5 - 0}$$

= 20 m s⁻¹

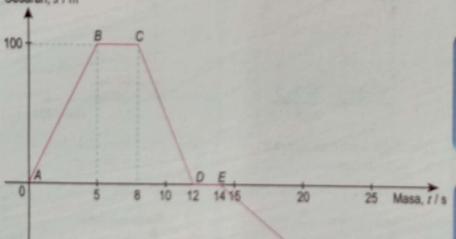
Maka, halaju motosikal ialah 20 m s⁻¹ ke kanan.

Bahagian BC:

Motosikal berhenti selama 3 saat.

Kecerunan graf = 0 m s-1

Maka, halaju motosikal ialah 0 m s-1.


Bahagian CD:

Motosikal berpatah balik dan ditunggang kembali ke titik asai dalam masa 4 saat.

Kecerunan graf =
$$\frac{0-100}{12-8}$$

= -25 m s⁻¹

Maka, halaju motosikal lalah 25 m s-1 ke kiri.

Bagaimanakah laju purata dan halaju purata ditentukan daripada graf sesaran-masa? Jumlah jarak yang dilalui = 100 + 100 + 50 = 250 m

Jumlah sesaran = 100 + (-100) + (-50) =-50 m

Bahagian DE:

Motosikal berada dalam keadaan pegun di titik asal selama 2 saat.

Kecerunan graf = 0 m s⁻¹

Maka, halaju motosikal ialah 0 m s⁻¹.

Bahagian EF:

Motosikal ditunggang ke kiri sejauh 50 m seiama 6 saat.

Kecerunan graf = 20 - 14 = -8.33 m s⁻¹

Maka, halaju motosikal ialah 8.33 m s-1 ke kiri.

Rajah 2.19 Menganalisis graf sesaran-masa

Jumlah jarak yang dilalui ialah 250 m dengan jumlah masa 20 s. Maka laju puratanya ialah

$$=\frac{250}{20}$$

=12.5 m s-1

Sesaran keseluruhan ialah -50 m dengan jumlah masa 20 s. Maka halaju purata ialah

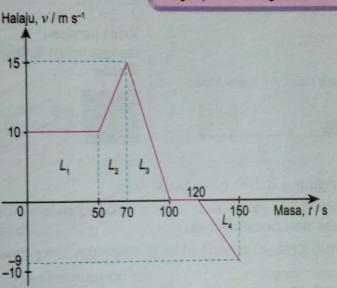
$$=\frac{-50}{20}$$

 $= -2.5 \text{ m s}^{-1}$

-50 +

Menganalisis Graf Halaju-Masa untuk Menentukan Jarak, Sesaran, Halaju dan Pecutan

Rajah 2.20 menunjukkan gerakan linear sebuah basikal. Rajah 2.21 menunjukkan graf halaju-masa yang menunjukkan gerakan basikal tersebut.


Rajah 2.20 Gerakan linear sebuah basikal

Sela masa: 0 – 50 saat Kecerunan graf = 0 m s⁻² Maka, basikal ini bergerak ke kanan dengan halaju seragam 10 m s⁻¹.

Sela masa: 50 - 70 saat Keceninan graf = $\frac{15 - 10}{10}$

Kecerunan graf = $\frac{15 - 10}{70 - 50}$ = 0.25 m s⁻³

Maka, basikal ini bergerak ke kanan dengan pecutan seragam 0.25 m s⁻².

Luas, L_1 = 500 m, L_2 = 250 m, L_3 = 225 m, L_4 = 135 m Jumlah jarak keseluruhan = $L_1 + L_2 + L_3 + L_4$ = 500 + 250 + 225 + 135 = 1 110 m Sesaran ke kanan = $L_1 + L_2 + L_3$ = 500 + 250 + 225 = 975 m Sesaran ke kiri = L_4 = 135 m Jumlah sesaran = $L_1 + L_2 + L_3 + L_4$ = 500 + 250 + 225 + (-135) = 840 m ke kanan Sela masa: 70 - 100 saat

Kecerunan graf =
$$\frac{0-15}{100-70}$$

= -0.5 m s⁻²

Pecutan basikal = -0.5 m s⁻²

Halaju basikal semakin berkurang. Basikal mengalami pecutan –0.5 m s⁻² (pada arah bertentangan dengan arah pergerakan basikal).

Sela masa: 100 – 120 saat Kecerunan graf = 0 m s⁻²

Halajunya adalah 0 m s⁻¹. Basikal berhenti dan pegun selama 20 saat.

Sela masa: 120 - 150 saat

Kecerunan graf =
$$\frac{-9-0}{150-120}$$

= -0.3 m s⁻²

Pecutan basikal = -0.3 m s⁻² Halaju basikal semakin bertambah. Basikal memecut secara seragam -0.3 m s⁻² (pada arah pergerakan basikal, iaitu ke kiri).

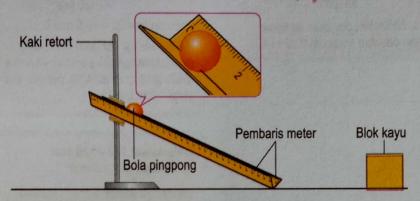
Rajah 2.21 Menganalisis graf halaju-masa

Laju purata dan halaju purata boleh ditentukan daripada kadar perubahan jarak keseluruhan dan kadar perubahan sesaran keseluruhan. Cuba anda tentukan laju purata dan halaju purata bagi graf halaju-masa di atas.

Tujuan: Menggunakan aplikasi Tracker untuk memetakan gerakan sebiji bola pingpong

dalam bentuk graf

Radas: Kaki retort, bongkah kayu dan pembaris meter


Bahan: Bola pingpong dan pita selofan

Arahan:

1. Jalankan aktiviti ini secara berkumpulan.

2. Muat turun perisian Tracker pada komputer dari laman sesawang yang diberikan di bawah

3. Susunkan radas seperti yang ditunjukkan dalam Rajah 2.22 menggunakan dua batang pembaris yang disusun dalam bentuk "V" untuk membentuk landasan yang condong.

Rajah 2.22

Muat turun perisian Tracker

https://physlets.

org/tracker/

Video panduan menggunakan perisian Tracker

http://bit. ly/2RFz1O2

- 4. Rakamkan video pergerakan bola pingpong dalam garis lurus.
- 5. Gunakan perisian *Tracker* untuk menganalisis pergerakan bola pingpong dalam video melalui graf sesaran-masa, halaju-masa dan pecutan-masa.
- 6. Rajah 2.23 menunjukkan contoh-contoh graf yang anda akan peroleh melalui perisian ini.

melawan masa

Plot o mass A (*, *)

0.35

0.36

0.20

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.15

0.10

0.15

0.10

0.15

0.10

0.15

0.15

0.10

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

Graf sesaran ufuk

9.04 (E. 9.08 -9.0

Graf sesaran menegak

melawan masa

Date From

Date Dates

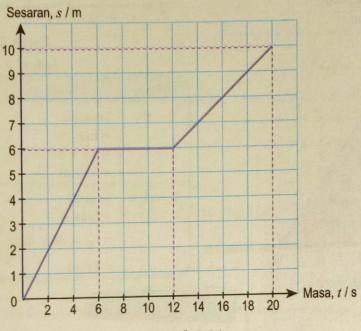
Dates

##

Graf laju melawan masa

Rajah 2.23 Contoh-contoh graf yang diperoleh

- 7. Bincangkan dan tafsirkan gerakan bola pingpong berdasarkan graf-graf yang diperoleh.
- 8. Analisis gerakan bola pingpong dari graf-graf yang diperoleh.
- 9. Bentangkan tafsiran dan analisis graf-graf yang diperoleh.



Menterjemah dan Melakar Graf

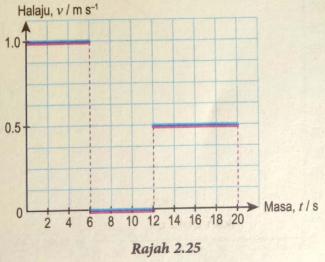
Graf sesaran-masa dapat diterjemahkan untuk melakarkan graf halaju-masa dan sebaliknya. Graf halaju-masa pula dapat diterjemahkan kepada graf pecutan-masa dan sebaliknya. Kemahiran menterjemah dan melakar graf adalah penting dalam menyelesaikan masalah yang melibatkan gerakan linear. Teliti contoh menterjemah dan melakar graf yang diberikan.

Contoh 1

Rajah 2.24 menunjukkan graf sesaran-masa suatu objek yang bergerak secara linear.

Rajah 2.24

- (a) Tentukan halaju pergerakan objek ini untuk setiap satu peringkat pergerakannya.
- (b) Terjemahkan graf sesaran-masa dalam Rajah 2.24 untuk melakarkan graf halaju-masa.

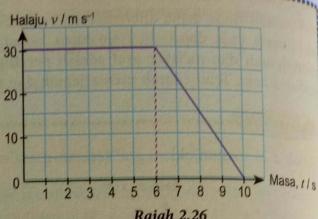

Penyelesaian:

(a) Halaju = Kecerunan graf sesaran-masa

Iadual 2.3

0 hingga 6 s	$v_1 = \frac{6 - 0}{6 - 0}$ $= 1 \text{ m s}^{-1}$
6 s hingga 12 s	$v_2 = \frac{6 - 6}{12 - 6}$ $= 0 \text{ m s}^{-1}$
12 s hingga 20 s	$v_3 = \frac{10 - 6}{20 - 12}$ $= 0.5 \text{ m s}^{-1}$

(b) Graf halaju-masa


Contoh 2

Rajah 2.26 menunjukkan graf halaju-masa yang diplot berdasarkan gerakan linear kereta yang dipandu oleh Encik Kassim. Beliau memandu keretanya pada halaju 30 m s-1 dan menekan brek apabila melihat halangan di jalan raya.

Terjemahkan graf halaju-masa bagi pergerakan kereta Encik Kassim dan lakarkan

- (a) graf sesaran-masa, dan
- (b) graf pecutan-masa.

Penyelesaian:

Rajah 2.26

Pecutan

= kecerunan graf

Pecutan

 $= 0 \text{ m s}^{-2}$

Pecutan

 $=\frac{0-30}{}$

10 - 6

 $= -7.5 \text{ m s}^{-2}$

Jadual 2.4

Sesaran

Sesaran = luas A

 $=30\times6$ = 180 m

Sesaran

= luas B

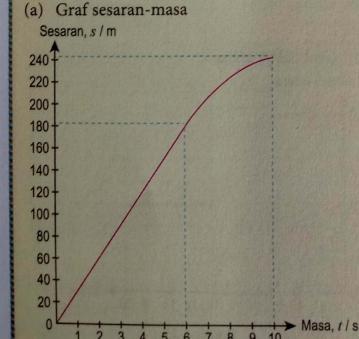
= 60 m

TARI

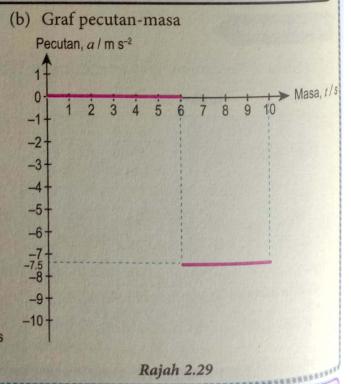
 $=\frac{1}{2}\times30\times4$

Masa

0 - 6 s


6 - 10 s

*	u, v /m s ⁻¹		
30			
20-			
10	A	В	
0	1 2 3 4	5 6 7 8 9 1	Masa, t/s


Raj	ah	2.	27	7
-----	----	----	----	---

Rajan 2.27	INFO
Sesaran selepas 10 s,	INFO BES
100 (0	

s = 180 + 60Untuk menentukan sesaran, luas di bawah graf perlu dihitungkan. = 240 mUntuk memudahkan kiraan luas, graf boleh dibahagikan kepada beberapa bahagian seperti dalam Rajah 2.27.

Rajah 2.28

Menyelesaikan Masalah Melibatkan Graf Gerakan Linear

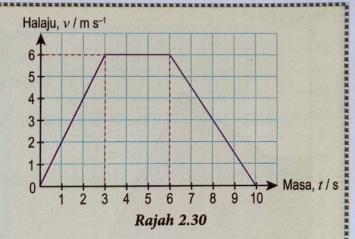
Contoh 1

Graf halaju-masa dalam Rajah 2.30 menunjukkan pergerakan Hasri. Tentukan

- (a) pecutan,
- (b) sesaran, dan
- (c) halaju purata.

Penyelesaian:

(a) Pecutan = kecerunan graf


Dari 0 - 3 s:
Pecutan
$$a_1 = \frac{6 - 0}{3}$$

$$= 2 \text{ m s}^{-2}$$

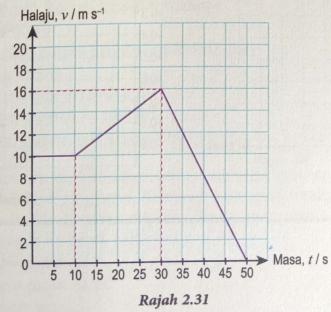
Pecutan
$$a_2 = 0$$

Pecutan
$$a_3 = \frac{0-6}{4}$$

$$= -1.5 \text{ m s}^{-2}$$

(b) Jumlah sesaran, s = luas di bawah graf= luas trapezium

$$= \frac{1}{2}(3+10)(6)$$
$$= 39 \text{ m}$$


(c) Halaju purata,
$$v = \frac{\text{Jumlah sesaran}}{\text{Jumlah masa}}$$

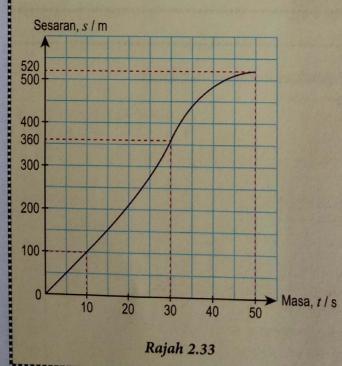
$$= \frac{39}{10}$$

Contoh 2

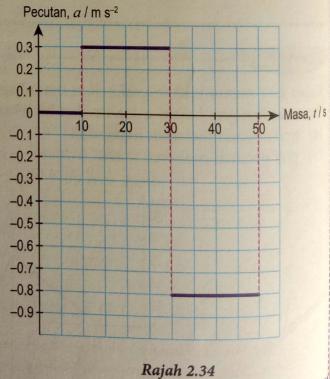
Rajah 2.31 menunjukkan graf halaju-masa bagi gerakan linear sebuah kereta. Terjemahkan graf halaju-masa itu dan lakarkan

- (a) graf sesaran melawan masa, dan
- (b) graf pecutan melawan masa.

Penyelesaian:


Hala	ju, v	/ m s ⁻¹				-		
20	-				-			
18	-	-						
16	+				-			
14	+	++	/					
12	+	1	4		1			
10					1			
8-					-			
6-	A		B		С	1		
4-	1		-			1		
2-							-	THE REAL PROPERTY.
0	-	10 45		5 00	05.4	0 45		Masa, t/
	5	10 15	20 2	25 30	35 4	0 45	50	
			R	aigh ?	22			

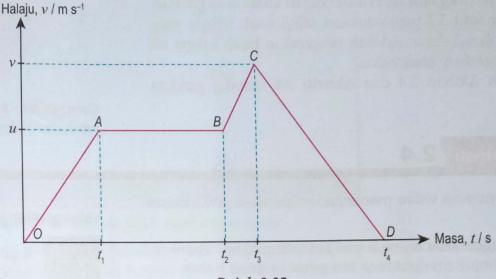
Sesaran selepas $30 \text{ s} = 100 + 260$
= 360 m
Sesaran selepas $50 \text{ s} = 100 + 260 + 160$
= 520 m


Jadual 2.5

Masa	Sesaran	Pecutan
0 – 10 s	Sesaran = luas A = 10 × 10 = 100 m	Pecutan = kecerunan graf = 0 m s ⁻²
10 – 30 s	Sesaran = luas B = $\frac{1}{2}(10 + 16)(20)$ = 260 m	Pecutan $= \frac{16 - 10}{30 - 10}$ = 0.3 m s ⁻²
30 – 50 s	Sesaran = luas C = $\frac{1}{2} \times 20 \times 16$ = 160 m	Pecutan $= \frac{0 - 16}{50 - 30}$ $= -0.8 \text{ m s}^{-2}$

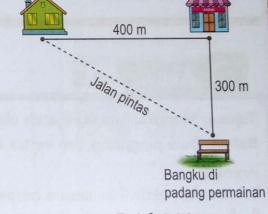
(a) Graf sesaran-masa

(b) Graf pecutan-masa



Latihan Formatif

- 1. Bagaimanakah anda boleh menentukan
 - (a) halaju daripada graf sesaran melawan masa?


22

- (b) pecutan daripada graf halaju melawan masa?
- (c) sesaran daripada graf halaju melawan masa?
- 2. Berdasarkan Rajah 2.35, huraikan pergerakan objek dari O sehingga D secara kualitatif.

Rajah 2.35

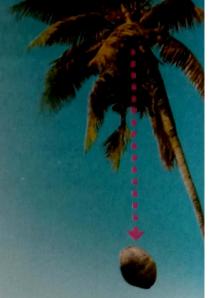
3. Rajah 2.36 menunjukkan Rokiah mengambil masa 3 minit untuk berjalan ke kedai runcit yang berada 400 m di sebelah kanan rumahnya. Selepas 1 minit, dia membeli aiskrim dan berjalan ke padang permainan yang terletak 300 m dari kedai runcit dalam masa 2 minit. Dia duduk dan berehat di bangku berhampiran padang permainan selama 2 minit. Kemudian, menggunakan jalan pintas kembali ke rumahnya. Rokiah tiba di rumahnya dalam masa 2 minit.

Rumah

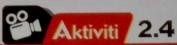
Kedai

Rajah 2.36

- (a) Berapakah halaju purata pergerakan Rokiah dari (i) rumah ke kedai?
 - (ii) kedai ke padang permainan?
 - (iii) padang permainan ke rumah?
- (b) Hitungkan laju purata bagi keseluruhan pergerakan Rokiah.
- 4. Sebuah kereta dipandu dari keadaan pegun sehingga mencapai pecutan 4 m s⁻² dalam masa 8 saat di lebuh raya yang lurus. Kereta itu kemudiannya dipandu pada halaju seragam selama 20 saat sebelum breknya ditekan. Kereta mengalami pengurangan halaju pada kadar 2 m s⁻² sehingga berhenti. Lakarkan graf
 - (a) pecutan melawan masa,
 - (b) halaju melawan masa, dan
 - (c) sesaran melawan masa.


Gerakan Jatuh Bebas

Gerakan Jatuh Bebas dan Pecutan Graviti


Suatu objek dikatakan mengalami gerakan jatuh bebas jika pergerakan objek itu dipengaruhi oleh daya graviti sahaja. Hal ini bermakna objek yang jatuh bebas tidak mengalami tindakan daya yang lain seperti rintangan udara atau geseran.

Gambar foto 2.2 menunjukkan sebiji buah kelapa yang jatuh dari pokok kelapa. Adakah pergerakan buah kelapa itu merupakan gerakan jatuh bebas?

Jalankan Aktiviti 2.4 dan Aktiviti 2.5 tentang gerakan jatuh bebas.

Gambar foto 2.2 Buah kelapa jatuh dari pokok kelapa

Tujuan: Menonton video menunjukkan gerakan jatuh bebas

Arahan:

Imbas QR code atau layari laman sesawang yang diberikan di sebelah untuk menonton video gerakan jatuh bebas.

Perbincangan:

Apakah pemerhatian anda terhadap gerakan jatuh bebas dalam video tersebut?

Video gerakan jatuh bebas

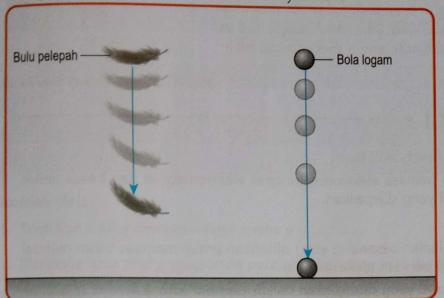
http://bit. lv/2CwzDew

Tujuan: Mengkaji gerakan jatuh objek Bahan: Bola pingpong dan kertas A4

Arahan:

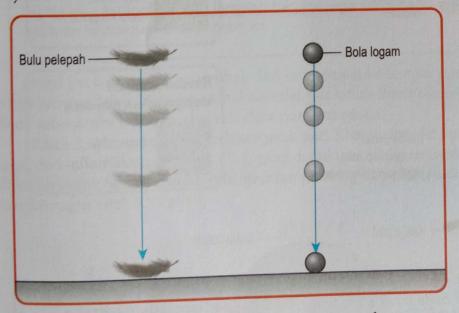
- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Pegang sehelai kertas di tangan kanan dan sebiji bola pingpong di tangan kiri seperti dalam Gambar foto 2.3.
- 3. Lepaskan kertas dan bola pingpong pada masa dan ketinggian yang sama.
- 4. Perhatikan pergerakan kertas dan bola pingpong.
- 5. Ulangi langkah 2 hingga 4 dengan kertas yang direnyukkan menjadi bentuk bebola.

Perbincangan:


- 1. Mengapakah pada cubaan pertama, kertas dan bola pingpong yang jatuh mengambil masa yang berbeza untuk tiba ke lantai?
- 2. Kertas yang digunakan di langkah 2 dan langkah 5 ialah kertas yang sama. Mengapakah kertas sebelum dan selepas direnyukkan jatuh pada kadar yang berbeza?

Gambar foto 2.3

Dalam kehidupan harian, kita akan melihat objek yang berat akan jatuh dan sampai ke permukaan Bumi dengan lebih cepat daripada objek yang ringan. Hal ini disebabkan oleh daya yang lain seperti rintangan udara. Perhatikan Rajah 2.37.

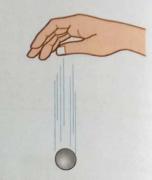


Pada 384-322 S.M, Aristotle menyimpulkan bahawa kadar objek yang jatuh bergantung kepada berat, bentuk dan orientasi objek. Akan tetapi, Galileo Galilei (1564 – 1642) melalui demonstrasi mendapati objek-objek akan jatuh dengan pecutan yang sama jika rintangan udara dapat diabaikan.

Rajah 2.37 Gerakan jatuh objek dalam udara

Objek yang berlainan jisim akan jatuh dengan pecutan yang sama jika rintangan udara tidak wujud. Keadaan ini akan berlaku dalam keadaan vakum. Teliti Rajah 2.38. Bulu pelepah dan bola logam yang dilepaskan dalam ruang vakum akan mencecah lantai pada masa yang sama. Gerakan jatuh bebas yang anda tonton dalam video di Aktiviti 2.4 sebenarnya telah dijalankan dalam keadaan vakum.

Video objek yang jatuh dalam keadaan biasa dan vakum


http://bit. ly/2DlXDCp

Rajah 2.38 Gerakan jatuh bebas dalam keadaan vakum

Pecutan objek yang jatuh bebas disebabkan oleh daya tarikan graviti dinamakan **pecutan graviti**, g. Nilai purata bagi pecutan graviti Bumi ialah 9.81 m s⁻². Halaju objek yang jatuh bebas akan bertambah sebanyak 9.81 m s⁻¹ setiap saat dalam medan graviti seragam berhampiran permukaan Bumi. Apabila suatu objek jatuh dalam medan graviti, dan rintangan udara diabaikan, objek tersebut dikatakan mengalami **jatuh bebas**.

Menentukan Nilai Pecutan Graviti

Objek yang jatuh bebas dalam medan graviti akan mengalami pecutan yang dikenali pecutan graviti. Oleh yang demikian, nilai pecutan graviti boleh ditentukan dengan mengukur pecutan objek berat seperti bola keluli di makmal fizik. Mari kita menggunakan sistem *photogate* dan pemasa elektronik untuk menentukan nilai pecutan graviti, g.

Rajah 2.39 Melepaskan bola keluli

2.1

Tujuan: Menentukan nilai pecutan graviti Bumi

Radas: Sistem photogate dan pemasa elektronik, pelepas elektromagnet dan bekas untuk menangkap bola keluli yang dilepaskan.

Prosedur:

- 1. Imbas QR code atau layari laman sesawang yang diberikan untuk memuat turun manual penggunaan photogate dan pemasa elektronik ini.
- 2. Susun bahan dan radas seperti yang ditunjukkan dalam Gambar foto 2.4.

Manual penggunaan photogate dan pemasa elektronik untuk eksperimen jatuh bebas

http://bit. ly/2V8qi7S

Kaedah alternatif menggunakan pita detik

http://bit. ly/2DhjsTm

Gambar foto 2.4

- 3. Letakkan photogate kedua pada jarak pemisahan, 30.0 cm dari photogate pertama.
- 4. Pastikan bola keluli boleh jatuh melalui kedua-dua photogate ke dalam bekas.
- 5. Lepaskan bola keluli yang dipegang oleh pelepas elektromagnet.
- 6. Catatkan masa yang diambil untuk bola keluli melalui photogate yang pertama sebagai t_1 dan photogate kedua sebagai t_2 dalam Jadual 2.6.
- 7. Ulangi langkah 3 hingga 6 untuk jarak pemisahan 40.0 cm, 50.0 cm, 60.0 cm dan 70.0 cm.

Keputusan:

Jadual 2.6

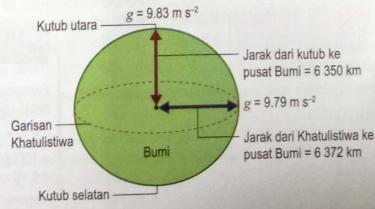
Jarak pemisahan antara	Masa gerakan mel	alui dua photogate	
dua photogate, h / cm	t ₁ / s	t ₂ / s	Pecutan graviti, g / m s ⁻²
30.0			
40.0			
50.0			
60.0	Residence of the second		
70.0			

Analisis data:

- 1. Tentukan nilai g menggunakan rumus $g = \frac{2h}{t_2^2 t_1^2}$.
- 2. Daripada lima nilai g yang anda peroleh, hitungkan nilai puratanya.

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?


Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- 1. Bandingkan nilai purata g daripada eksperimen ini dengan nilai piawai g di Khatulistiwa, 9.78 m s $^{-2}$. Mengapakah terdapat perbezaan antara dua nilai tersebut?
- 2. Nyata dan terangkan satu langkah berjaga-jaga yang perlu diambil untuk memperbaiki kejituan keputusan eksperimen ini.

Nilai pecutan graviti, g berubah dari satu tempat ke tempat yang lain. Misalnya nilai g di Khatulistiwa ialah 9.78 m s⁻², manakala nilai g di kutub Bumi ialah 9.83 m s⁻². Hal ini kerana Bumi sebenarnya bukan berbentuk sfera yang sempurna.

Rajah 2.40 menunjukkan bahawa jarak dari Khatulistiwa ke pusat Bumi lebih jauh daripada jarak dari kutub ke pusat Bumi. Oleh yang demikian, nilai g lebih kecil di Khatulistiwa daripada di kutub Bumi. Secara umum, nilai pecutan graviti, g di permukaan Bumi yang digunakan dalam penghitungan ialah 9.81 m s⁻².

Rajah 2.40 Jarak yang berbeza dari pusat Bumi

Penyelesaian Masalah yang Melibatkan Objek yang Jatuh Bebas

Objek yang dilontarkan ke atas dan objek yang dilepaskan ke bawah mengalami pecutan graviti, g. Oleh itu, persamaan gerakan linear di bawah boleh diaplikasi terhadap objek yang jatuh bebas.

$$v = u + gt$$

$$s = ut + \frac{1}{2}gt^2$$

$$v^2 = u^2 + 2gs$$

Dalam penyelesaian masalah, kita membuat andaian bahawa, pergerakan ke atas sebagai pergerakan ke arah positif dan pergerakan ke bawah sebagai pergerakan ke arah negatif seperti yang ditunjukkan dalam Rajah 2.41.

Rajah 2.41 Andaian arah pergerakan objek yang dilontarkan ke atas atau dilepaskan ke bawah

Contoh 1

Amirah melontarkan sebiji bola ke atas secara menegak dengan halaju awal 10 m s⁻¹. Hitungkan

- (a) masa untuk bola itu mencapai tinggi maksimum, dan
- (b) tinggi maksimum yang boleh dicapai oleh bola itu. Abaikan rintangan udara. [$g = 9.81 \text{ m s}^{-2}$]

Bola bergerak ke atas, maka u ialah positif tetapi g ialah negatif.

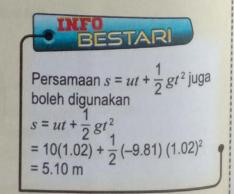
Penyelesaian:

(a) Langkah
Senaraikan maklumat yang diberi dengan simbol.

Halaju awal, $u = 10 \text{ m s}^{-1}$ Halaju akhir pada ketinggian maksimum, $v = 0 \text{ m s}^{-1}$ Pecutan, $g = -9.81 \text{ m s}^{-2}$

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.


$$\begin{cases} v = u + gt \end{cases}$$

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$\begin{cases} 0 = 10 - 9.81t \\ t = \frac{10}{9.81} \\ = 1.02 \text{ s} \end{cases}$$

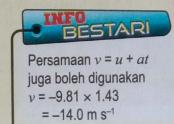
(b)
$$v^2 = u^2 + 2gs$$

 $0 = 10^2 + 2(-9.81)s$
 $s = \frac{10^2}{2 \times 9.81}$
 $= 5.10 \text{ m}$

Contoh 2

Chan melepaskan sebiji batu dari satu tebing setinggi 10 m. Tentukan

- (a) masa untuk batu itu sampai ke tanah di bahagian bawah tebing, dan
- (b) halaju batu sebelum menyentuh tanah.


Abaikan rintangan udara. [$g = 9.81 \text{ m s}^{-2}$]

Penyelesaian:

(a)
$$s = ut + \frac{1}{2}gt^2$$

 $-10 = (0)t + \frac{1}{2}(-9.81)t^2$
 $2 \times (-10) = (-9.81)t^2$
 $t = \pm \sqrt{\frac{-20}{-9.81}}$
 $= 1.43 \text{ s}$
 $(t = -1.43 \text{ tidak diambil kira})$

(b)
$$v^2 = u^2 + 2gs$$

 $= 2 \times (-9.81) \times (-10)$
 $v = \pm \sqrt{2 \times (-9.81) \times (-10)}$
 $= \pm 14.0 \text{ m s}^{-1}$
 $v = -14.0 \text{ m s}^{-1}$

 $(v = 14.0 \text{ m s}^{-1} \text{ tidak diambil kira kerana batu bergerak ke arah bawah}).$

Latihan Formatif

2.3

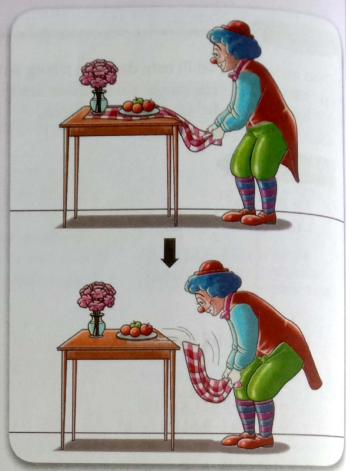
- 1. Apakah maksud jatuh bebas?
- 2. Sebiji bola plastik dan sebiji bola keluli yang sama saiz dilepaskan dari tebing bukit. Adakah bola-bola itu akan sampai ke kaki bukit pada masa yang sama? Jelaskan jawapan anda.
- 3. Suatu objek yang dilontarkan ke atas secara menegak mencapai ketinggian maksimum 5.0 m. Hitungkan
 - (a) halaju objek itu semasa dilontarkan,
 - (b) masa untuk objek sampai ke tinggi maksimum, dan
 - (c) masa yang diperlukan untuk objek kembali ke aras asalnya.

Abaikan rintangan udara. [$g = 9.81 \text{ m s}^{-2}$]

- 4. Sebiji bola tenis yang dilepaskan jatuh secara menegak dari sebuah bangunan setinggi 50 m. Hitungkan
 - (a) masa untuk bola sampai ke tapak bangunan,
 - (b) halaju bola sebaik sebelum mencecah lantai, dan
 - (c) jarak tegak yang dilalui pada saat ketiga.

Abaikan rintangan udara. [$g = 9.81 \text{ m s}^{-2}$]

2.4 Inersia


Konsep Inersia

Rajah 2.42 menunjukkan objek-objek yang pegun di atas meja kekal pegun walaupun alas meja di bawahnya disentap oleh penghibur itu. Kejadian ini disebabkan **inersia**.

Inersia ialah kecenderungan suatu objek untuk kekal dalam keadaan asalnya, sama ada pegun atau bergerak dalam garisan lurus dengan halaju malar. Konsep inersia dijelaskan dalam Hukum Gerakan Newton Pertama.

Hukum Gerakan Newton Pertama

menyatakan bahawa sesuatu objek akan kekal dalam keadaan pegun atau bergerak dengan halaju malar jika tiada daya luar bertindak ke atasnya.

Rajah 2.42 Seorang penghibur menyentap alas meja tanpa menggerakkan objek di atas meja

Tujuan: Menunjukkan konsep inersia

Bahan: Gelas berisi air, duit syiling dan kadbod nipis

Arahan:

1. Susun bahan seperti yang ditunjukkan dalam Rajah 2.43.

Rajah 2.43

2. Sentap kadbod di bawah syiling secara mengufuk dengan pantas ke sisi.

Perbincangan:

- 1. Mengapakah duit syiling tidak bergerak mengikut arah gerakan kadbod nipis itu?
- 2. Apakah akan berlaku jika kadbod itu ditarik secara perlahan-lahan? Jelaskan jawapan anda dengan merujuk kepada Hukum Gerakan Newton Pertama.

Mengenal Pasti Hubungan antara Inersia dengan Jisim

Gambar foto 2.5 menunjukkan bola boling dan bola sepak. Adakah lebih mudah untuk menggerakkan bola boling atau bola sepak? Bola manakah yang sukar untuk diberhentikan apabila bergerak?

Gambar foto 2.5 Dua bola yang berlainan jisim

Objek yang berjisim besar seperti bola boling sukar digerakkan dan dihentikan berbanding dengan objek yang lebih ringan seperti bola sepak. Apakah hubungan antara jisim dengan inersia? Mari kita menjalankan eksperimen menggunakan neraca inersia yang ringkas.

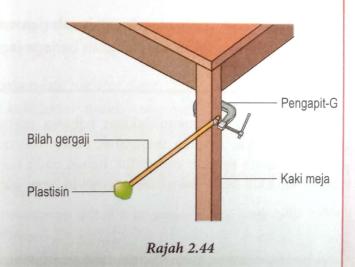
2.2

Inferens: Inersia suatu objek bergantung kepada jisimnya

Hipotesis: Semakin besar jisim suatu objek, semakin besar inersia objek tersebut

Tujuan: Mengenal pasti hubungan antara inersia dengan jisim

Pemboleh ubah


- (a) Dimanipulasikan: Jisim plastisin, m
- (b) Bergerak balas: Tempoh ayunan, T
- (c) Dimalarkan: Jarak antara pengapit-G dengan bebola plastisin

Radas: Jam randik, pengapit-G, pembaris dan bilah gergaji

Bahan: Plastisin berjisim 20.0 g, 30.0 g, 40.0 g, 50.0 g dan 60.0 g

Prosedur:

- Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 2.44.
- Lekatkan seketul plastisin berjisim 20.0 g di hujung bilah gergaji.
- 3. Sesarkan bilah gergaji secara mengufuk dan kemudian lepaskan supaya plastisin itu berayun.
- **4.** Catatkan masa, t_1 untuk 10 ayunan lengkap plastisin itu dalam Jadual 2.7.
- 5. Ulangi langkah 3 dan 4 dan catatkan masa sebagai t_2 .
- 6. Ulangi langkah 2 hingga 5 menggunakan ketulan plastisin yang berjisim 30.0 g, 40.0 g, 50.0 g dan 60.0 g.

Keputusan:

Jadual 2.7

Jisim plastisin	Masa	Tempoh ayunan			
m / g	<i>t</i> ₁	t ₂	t _{purata}	T/s	
20.0		30 2			
30.0					
40.0					
50.0		Lary of the life			
60.0		The state of the s			

Analisis data:

1. Tentukan tempoh ayunan plastisin, T di hujung bilah gergaji dengan:

$$T = \frac{t_{\text{purata}}}{10}$$
, dengan $t_{\text{purata}} = \frac{t_1 + t_2}{2}$

- 2. Plotkan graf T^2 melawan m pada kertas graf.
- 3. Berdasarkan graf yang anda telah plot, nyatakan hubungan antara tempoh ayunan, T dengan jisim plastisin, m.
- 4. Anda telah memperoleh hubungan antara tempoh ayunan dengan jisim. Bagaimanakah hubungan antara jisim dengan inersia ditentukan daripada eksperimen ini?

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- 1. Bagaimanakah susunan radas ini boleh digunakan untuk menentukan jisim suatu objek?
- 2. Nyata dan terangkan satu langkah berjaga-jaga untuk memperbaiki kejituan keputusan eksperimen ini.

Eksperimen 2.2 menunjukkan bahawa inersia suatu objek mempunyai hubungan terus dengan jisimnya. Ayunan mengufuk beban dalam neraca inersia tidak dipengaruhi oleh daya graviti. Tempoh ayunan mengufuk beban pada neraca inersia bergantung kepada jisim plastisin sahaja. Semakin besar jisim objek, semakin besar inersia objek tersebut.

Kesan Inersia Dalam Kehidupan Harian


Angkasawan di dalam kapal angkasa seperti Stesen Angkasa Antarabangsa (ISS) berada dalam keadaan tanpa daya graviti. Dalam keadaan tanpa daya graviti, hanya neraca inersia dapat digunakan untuk mengukur jisim. Gambar foto 2.6 menunjukkan neraca inersia khas yang digunakan oleh angkasawan untuk mengukur jisim badan. Tempoh ayunan seseorang angkasawan digunakan untuk menentukan jisimnya.

Gambar foto 2.6 Penggunaan neraca inersia oleh angkasawan

Inersia boleh memberi kesan yang baik dan buruk dalam kehidupan harian. Mari kita bincangkan situasi kehidupan harian yang melibatkan inersia.

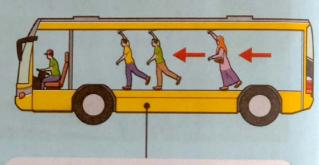
Tujuan: Membincangkan situasi kehidupan harian yang melibatkan inersia

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan dalam bentuk Hot Seat.
- 2. Baca dan cari maklumat mengenai situasi kehidupan harian yang melibatkan inersia.
- 3. Bincangkan sama ada situasi yang anda telah cari menunjukkan kesan baik atau buruk inersia kepada manusia.
- 4. Sekiranya situasi itu menunjukkan kesan buruk, cadangkan kaedah untuk mengurangkan kesan buruk inersia bagi situasi yang anda cari.
- 5. Seorang ahli kumpulan akan mewakili kumpulannya untuk menjawab pertanyaan ahli kumpulan lain mengenai situasi yang dipilih.

Berikut merupakan beberapa contoh situasi yang melibatkan inersia dalam kehidupan harian dan kesannya.

Situasi 1


Titisan air hujan jatuh daripada payung apabila payung yang basah diputar dan diberhentikan secara serta-merta.

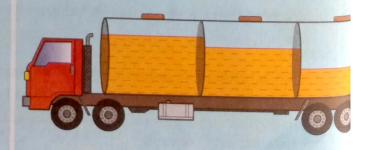
Titisan air hujan pada payung dalam keadaan bergerak apabila payung diputarkan. Apabila payung berhenti berputar, inersia titisan-titisan air hujan akan menyebabkan titisan air terus bergerak dan meninggalkan permukaan payung.

Situasi 2

Penumpang terhumban ke belakang apabila bas yang pegun bergerak ke hadapan secara tiba-tiba.

Penumpang terhumban ke hadapan apabila bas yang bergerak diberhentikan secara tiba-tiba.

Inersia penumpang akan cuba mengekalkan keadaan rehat atau keadaan gerakan yang asal.


Situasi 3

Sos cili atau sos tomato di dalam botol kaca boleh mengalir keluar dengan mengerak-gerakkan botol dengan cepat ke bawah dan menghentikannya secara tiba-tiba. Apabila gerakan botol dihentikan, inersia sos menyebabkannya terus bergerak ke bawah dan mengalir keluar dari botol.

Situasi 4

Lori tangki minyak petrol mempunyai inersia yang besar. Lori tangki minyak petrol sebenarnya mempunyai tangki minyak yang terbahagi kepada beberapa bahagian berasingan di dalamnya. Tangki yang berasingan dapat mengurangkan impak inersia minyak petrol ke atas dinding tangki jika lori itu berhenti secara mendadak.

2.4.3

Situasi 5

Penumpang roller-coaster di taman rekreasi ditetapkan di tempat duduk oleh sistem keledar yang khas. Gerabak roller-coaster bergerak dengan laju dan arah yang berubah-ubah secara mendadak.

Semasa gerabak roller-coaster berubah arah dan laju pergerakan secara tiba-tiba, inersia badan penumpang akan cuba mengekalkan keadaan gerakan asalnya. Sistem keledar dalam gerabak memastikan penumpang kekal di tempat duduknya dan tidak terhumban keluar semasa perubahan arah dan laju gerakan.

Situasi 6

Pemandu kereta dan penumpang di dalam kereta disarankan agar memakai tali pinggang keledar.

Apabila brek kereta ditekan secara mengejut, pemandu dan penumpang di dalam kereta akan terhumban ke hadapan akibat inersia. Penggunaan tali pinggang keledar dapat mengelakkan mereka daripada terhumban ke hadapan dan tercedera.

Latihan Formatif

24

- 1. Jelaskan maksud inersia.
- 2. Brian ingin menarik alas meja tanpa menjatuhkan barang yang berada di atas alas meja tersebut. Bagaimanakah Brian boleh berbuat demikian? Jelaskan jawapan anda.
- 3. Teliti pernyataan di bawah.

Pernyataan 1: Objek hanya boleh terus bergerak jika ada daya yang bertindak.

Pernyataan 2: Roket di angkasa lepas boleh bergerak tanpa daya pemacu daripada enjin roket.

Pernyataan 3: Daya diperlukan untuk mengubah keadaan gerakan objek.

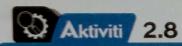
- (a) Pernyataan yang manakah boleh dijelaskan menggunakan Hukum Gerakan Newton Pertama?
- (b) Jelaskan pilihan anda.

2.5 Momentum

Gambar foto 2.7 menunjukkan kereta yang dipandu laju dan lori yang membawa muatan berat di lebuh raya. Kenderaan manakah yang sukar untuk dihentikan sekiranya dipandu dengan halaju yang sama?

Momentum ialah kuantiti vektor sesuatu objek. Semua objek yang bergerak mempunyai momentum. Arah momentum bergantung kepada arah halaju objek tersebut. Objek yang bergerak dengan halaju yang tinggi atau jisim yang besar mempunyai momentum yang besar. Momentum, p suatu objek yang bergerak dapat dihitung menggunakan rumus yang berikut:

$$p = mv$$
, dengan $p =$ momentum $m =$ jisim $v =$ halaju


Unit S.I. momentum ialah kg m s-1

Gambar foto 2.7 Kereta dan lori yang dipandu di lebuh raya

INTEGRASI BAHASA

Perkataan momentum berasal daripada bahasa Latin yang bermaksud movement iaitu pergerakan. Isaac Newton menyatakannya sebagai "quantity of motion".

Tujuan: Mengkaji bagaimana jisim dan halaju suatu objek mempengaruhi kesan untuk menghentikan objek tersebut

Bahan: Dua biji guli dengan jisim yang berlainan, pembaris dengan alur di tengah, dua buku tebal, kadbod nipis dan pita pelekat

Arahan:

- Sediakan susunan bahan seperti yang ditunjukkan dalam Rajah 2.45. Tinggikan satu hujung pembaris dengan sebuah buku.
- Lepaskan guli dari hujung atas pembaris agar berlanggar dengan kadbod yang didirikan di hujung pembaris.
- 3. Ukur jarak pergerakan kadbod, s_1 selepas dilanggar guli dan catatkannya ke dalam Jadual 2.8.

Rajah 2.45

- 4. Ulangi langkah 2 hingga 3 dan catatkan jarak pergerakan sebagai s_2 .
- 5. Hitungkan $s_{\text{purata}} = \frac{s_1 + s_2}{2}$ dan catatkannya.
- 6. Ulangi langkah 1 hingga 5 dengan ketinggian dua buah buku yang sama tebal.
- 7. Ulangi langkah 1 hingga 5 dengan menggantikan guli yang berjisim besar.

Keputusan:

-			
Jad	ual	2 0	
Jun	иш	4.0	

Jisim	Bilangan buku	Jarak pergerakan kadbod, s / cm			
		<i>s</i> ₁	<i>s</i> ₂	Spurata	
Kecil	1		MARIE R.C.	purata	
Kecil	2				
Besar	1				

Perbincangan:

- 1. Apakah yang diwakili oleh jarak pergerakan kadbod, s itu?
- 2. Bagaimanakah halaju guli mempengaruhi jarak pergerakan kadbod, s?
- 3. Bagaimanakah jisim guli mempengaruhi jarak pergerakan kadbod, s?

Guli yang dilepaskan dari kedudukan yang lebih tinggi akan bergerak ke bawah dengan halaju yang tinggi dan menggerakkan kadbod pada jarak yang lebih jauh. Keadaan yang sama juga berlaku pada guli yang berjisim besar. Jarak pergerakan kadbod mewakili kesukaran untuk menghentikan guli. Objek yang mempunyai momentum yang besar adalah sukar untuk dihentikan.

Contoh

Sebuah lori berjisim kira-kira 20 000 kg bergerak dengan halaju 22 m s-1. Sebuah kereta berjisim kira-kira 2 000 kg bergerak dengan halaju 30 m s⁻¹.

- (a) Berapakah momentum lori dan kereta tersebut?
- (b) Sekiranya lori itu bergerak dengan halaju yang sama dengan kereta tersebut, berapakah momentum lori itu?

Penyelesaian:

(a) Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

Momentum kereta, $p = 2 000 \text{ kg} \times 30 \text{ m s}^{-1}$ $= 60~000 \text{ kg m s}^{-1}$

 $= 60\ 000\ N\ s$

- (b) Momentum lori yang bergerak dengan halaju kereta
 - $= 20~000 \text{ kg} \times 30~\text{m s}^{-1}$
 - $= 600\ 000\ \text{kg m s}^{-1}$
 - = 600 000 N s

Jisim lori, m = 20000 kgHalaju lori, $v = 22 \text{ m s}^{-1}$

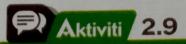
Momentum lori,

p = mv

 $p = 20\ 000\ \text{kg} \times 22\ \text{m}\ \text{s}^{-1}$

 $= 440~000 \text{ kg m s}^{-1}$

= 440000 N s

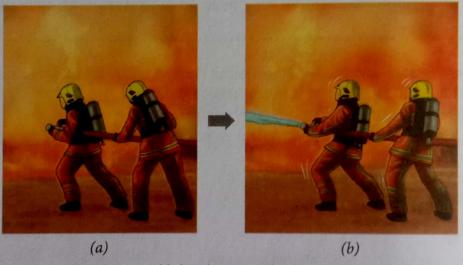

Unit newton (N) dalam sebutan unit asas ialah kg m s-2.

Unit bagi momentum: $kg m s^{-1} = (kg m s^{-2}) s$

Aplikasi Konsep Momentum dalam Kehidupan Harian

Anda telah mengetahui definisi momentum dan telah mengkaji bagaimana jisim serta halaju mempengaruhi momentum objek. Jalankan Aktiviti 2.9 untuk memahami aplikasi momentum dalam kehidupan harian.

KM


Tujuan: Membincangkan aplikasi konsep momentum dalam kehidupan harian

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Layari laman sesawang untuk mencari maklumat mengenai aplikasi momentum dalam kehidupan harian dan bentangkan hasil perbincangan anda.

Mengaplikasi Prinsip Keabadian Momentum dalam Perlanggaran dan Letupan

Rajah 2.46(a) dan (b) menunjukkan dua orang ahli bomba yang sedang memadamkan kebakara Dalam Rajah 2.46(b) kedua-dua ahli bomba tersebut kelihatan tersentak ke belakang apabila aberkelajuan tinggi dipancutkan daripada hos itu. Mengapakah keadaan ini berlaku?

Rajah 2.46 Ahli bomba memadamkan kebakaran

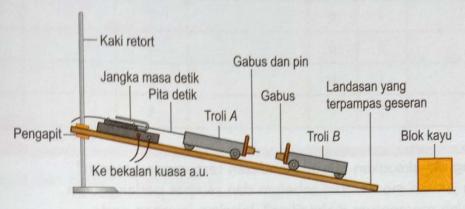
Air yang terpancut dengan kelajuan yang tinggi dari hos tersebut mempunyai momentum yang tinggi ke hadapan. Oleh yang demikian, dua atau lebih ahli bomba diperlukan untuk mengimbangkan momentum dengan memegang hos tersebut dengan kuat.

KM

Tujuan: Mengkaji situasi yang melibatkan Prinsip Keabadian Momentum dalam kehidupan harian

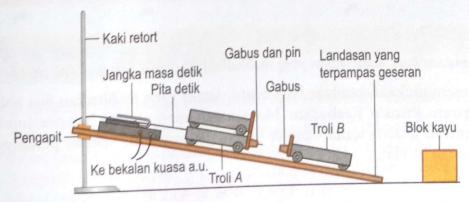
Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Cari maklumat mengenai satu situasi yang melibatkan Prinsip Keabadian Momentum dalam kehidupan harian.
- 3. Bentangkan hasil pencarian anda dalam bentuk persembahan multimedia yang menarik.


Tujuan: Menyiasat Prinsip Keabadian Momentum menggunakan troli

Radas: Jangka masa detik, bekalan kuasa a.u., landasan, troli, bongkah kayu dan kaki retort

Bahan: Pita detik, pita selofan, plastisin, pin dan gabus


Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 2.47.

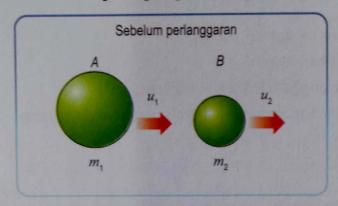
Rajah 2.47

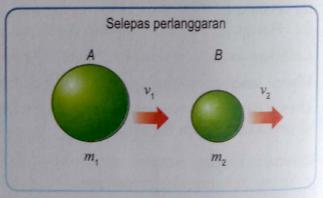
- Laraskan kecerunan landasan aluminium itu dengan meninggikan satu hujung landasan supaya landasan dalam keadaan terpampas geseran.
- 4. Hidupkan jangka masa detik dan tolak troli A dengan kuat ke arah troli B.
- 5. Tentukan halaju-halaju yang berikut dalam cm per 10 detik:
 - (a) Halaju troli A sebelum perlanggaran, u_1 .
 - (b) Halaju sepunya troli A dan B selepas perlanggaran, v.
- 6. Catatkan keputusan dalam Jadual 2.9 pada halaman 62.
- 7. Ulangi langkah 4 hingga 6 untuk 1 troli berlanggar dengan 2 troli pegun.
- 8. Ulangi langkah 4 hingga 6 untuk 2 troli berlanggar dengan 1 troli pegun seperti yang ditunjukkan dalam Rajah 2.48.

Rajah 2.48

9. Ulangi langkah 4 hingga 6 untuk 3 troli berlanggar dengan 1 troli.

Keputusan:


Jadual 2.9


Sebelum perlanggaran					Selepas perlanggaran		
Troli A		Troli B		Jumlah momentum	Troli A dan troli B		Jumlah momentum
m ₁	(cm per 10 detik)	m ₂	u ₂	$m_1 u_1 + m_2 u_2$	$m_1 + m_2$	v (cm per 10 detik)	$(m_1 + m_2)v$
1		1	0		2		
1		2	0		3		
2		1	0		3		
3		1	0		4		

Perbincangan:

- 1. Apakah yang dimaksudkan dengan landasan terpampas geseran?
- 2. Bandingkan jumlah momentum sebelum dan selepas perlanggaran.
- 3. Adakah jumlah momentum diabadikan? Jelaskan jawapan anda.

Dalam Aktiviti 2.11, anda mungkin memperoleh jumlah momentum sebelum dan selepas perlanggaran yang berbeza sedikit. Perbezaan itu adalah disebabkan oleh kesan daya luar seperti geseran tidak dapat dipampaskan sepenuhnya.

Rajah 2.49 Keadaan bagi suatu sistem yang melibatkan dua objek sebelum dan selepas perlanggaran

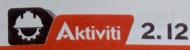
Rajah 2.49 menunjukkan keadaan bagi suatu sistem yang melibatkan dua objek sebelum dan selepas perlanggaran. Prinsip Keabadian Momentum menyatakan bahawa jumlah momentum sebelum perlanggaran adalah sama dengan jumlah momentum selepas perlanggaran jika tiada sebarang daya luar bertindak.

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

Rajah 2.50 menunjukkan pelancaran roket. Pelancaran roket adalah satu contoh letupan. Letupan merujuk kepada satu situasi apabila satu objek yang berada dalam keadaan pegun terlerai kepada dua atau lebih bahagian. Sebelum pelancaran, roket berada pegun di tapak pelancaran dengan momentum sifar. Selepas pelancaran, gas panas bergerak ke bawah dan roket bergerak ke atas. Letupan merupakan sistem tertutup yang tidak melibatkan daya luar. Oleh itu, jumlah momentum diabadikan dalam letupan.

Jumlah momentum sebelum letupan =
$$\frac{\text{jumlah momentum}}{\text{selepas letupan}}$$

 $0 = m_1 v_1 + m_2 v_2$
 $m_1 v_1 = -m_2 v_2$

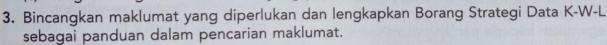


Rajah 2.50 Pelancaran roket

Borang Strategi Data K-W-L

http://bit.

ly/2HnTOAO



Tujuan: Membina dan melancarkan roket air

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Kumpulkan maklumat berkaitan perkara-perkara berikut:
 - (a) bahan-bahan yang diperlukan untuk membina dan melancarkan roket air
 - (b) cara-cara membina roket air
 - (c) langkah-langkah keselamatan yang perlu dipatuhi

- 4. Reka bentuk, bina dan lancarkan roket air kumpulan anda di padang sekolah.
- 5. Sediakan laporan mengenai aplikasi Prinsip Keabadian Momentum dalam teknologi pelancaran roket air.

Latihan Formatif

2.5

- 1. Apakah yang dimaksudkan dengan momentum dan keabadian momentum?
- 2. Sebuah lori berjisim 1 000 kg yang bergerak dengan halaju 5.0 m s⁻¹ berlanggar dengan sebuah kereta berjisim 800 kg yang bergerak dengan halaju 2.0 m s⁻¹ pada arah yang sama. Jika lori itu bergerak dengan halaju 3.4 m s⁻¹ pada arah yang sama selepas perlanggaran, hitungkan halaju kereta itu.

Kebanyakan aktiviti dalam kehidupan harian melibatkan daya. Daya boleh mengubah keadaan gerakan sesuatu objek. Bagaimanakah daya mengubah momentum gerakan sesuatu objek pada satu garis lurus?

Aktiviti 2.13

Tujuan: Menjana idea mengenai hubungan antara daya dengan pecutan serta jisim dengan pecutan

Radas: Jangka masa detik, bekalan kuasa a.u., landasan aluminium, troli dan kaki retort Bahan: Pita detik, pita selofan, tali kenyal (dengan gelang diikat pada setiap hujung)

(A) Mengkaji hubungan antara daya dengan pecutan untuk jisim tetap

Arahan:

- 1. Sediakan susunan radas dan bahan seperti yang ditunjukkan dalam Rajah 2.51.
- 2. Hidupkan jangka masa detik dan tarik troli ke bawah landasan dengan seutas tali kenyal (1 unit daya).
- 3. Hitungkan pecutan troli daripada carta pita detik yang diperoleh dan catatkan dalam Jadual 2.10.
- 4. Ulangi langkah 2 hingga 3 menggunakan dua utas tali kenyal dan tiga utas tali kenyal, masing-masing diregangkan kepada panjang yang sama seperti dalam langkah 2.
- 5. Plotkan graf pecutan, a melawan daya, F dan seterusnya nyatakan hubungan antara pecutan, a dengan daya, F.

Rajah 2.51

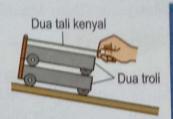
Panduan menjalankan Aktiviti 2.13

http://bit. ly/31s8tkH

Keputusan:

Jadual 2.10

Daya, F	u / cm s ⁻¹	v / cm s ⁻¹	t/s	a / cm s ⁻²
1 tali kenyal				
2 tali kenyal				
3 tali kenyal				


B Mengkaji hubungan antara jisim dengan pecutan untuk keadaan daya tetap Arahan:

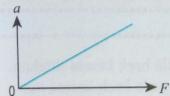
1. Ulangi langkah 1 hingga 2 di Aktiviti A dengan menarik sebuah troli menggunakan dua utas tali kenyal yang diregangkan bersama-sama.

- Ulangi langkah 1 di Aktiviti B menggunakan dua buah troli seperti yang ditunjukkan dalam Rajah 2.52 dan kemudiannya dengan tiga buah troli.
- 3. Hitungkan pecutan troli daripada pita detik yang diperoleh dan catatkan dalam Jadual 2.11.
- 4. Plotkan graf pecutan, a melawan songsangan jisim, $\frac{1}{m}$ dan seterusnya nyatakan hubungan antara pecutan, a dengan jisim, m.

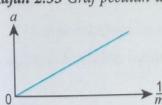
Rajah 2.52

Keputusan:

Jadual 2.11


Jisim	u / cm s ⁻¹	v / cm s ⁻¹	t/s	a / cm s ⁻²
1 troli, m				
2 troli, 2m				
3 troli, 3m				

 $a \propto F$


m malar

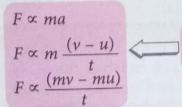
F malar

Keputusan Aktiviti 2.13 menunjukkan bahawa pecutan suatu objek bergantung pada daya yang dikenakan dan jisim objek itu.

Rajah 2.53 Graf pecutan-daya

Rajah 2.54 Graf pecutansongsangan jisim

Pecutan berkadar terus dengan daya yang dikenakan apabila jisim objek itu malar.


Pecutan berkadar songsang dengan jisim objek apabila daya yang malar dikenakan. Daya = FJisim = mPecutan = a

Gabungkan kedua-dua hubungan:

$$a \propto \frac{F}{m}$$

Maka, F ∝ ma

Hubungan antara daya, F, jisim, m dan pecutan, a bagi suatu objek yang bergerak ialah

Ungkapan Hukum Gerakan Newton Kedua

Fail INFO

Perubahan = mv - mumomentum

Kadar perubahan = $\frac{(mv - mu)}{t}$ momentum

Hukum Gerakan Newton Kedua menyatakan bahawa kadar perubahan momentum berkadar terus dengan daya dan bertindak pada arah tindakan daya. Daripada hubungan

F ∝ ma

F = kma, k ialah pemalar.

Dalam Unit S.I., 1 N ialah daya yang menghasilkan pecutan 1 m s⁻² apabila bertindak ke atas jisim 1 kg. Dengan itu,

$$1 \text{ N} = k \times 1 \text{ kg} \times 1 \text{ m s}^{-2}$$

$$k = 1$$

Maka, F = ma

Menyelesaikan Masalah Melibatkan Rumus F = ma

Contoh 1

Seorang pekerja menarik satu beban berjisim 80 kg di sepanjang suatu permukaan mengufuk dengan daya 160 N. Jika permukaan itu adalah licin dan tiada rintangan lain yang menentang gerakan beban, berapakah pecutan beban itu?

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Jisim,
$$m = 80 \text{ kg}$$

Daya, $F = 160 \text{ N}$

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 🔞

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$160 = 80 \times a$$
$$a = \frac{160}{80}$$
$$= 2 \text{ m s}^{-2}$$

Sebuah kereta berjisim 1 200 kg bergerak dengan halaju 30 m s-1. Apabila brek kereta ditekan, kereta itu berhenti dalam masa 5 saat. Hitungkan daya yang dikenakan pada brek kereta itu.

Penyelesaian:

Pecutan kereta,
$$a = \frac{v - u}{t}$$

$$= \frac{0 - 30}{5}$$

$$= -6 \text{ m s}^{-1}$$

Daya yang dikenakan pada brek kereta, F = ma

$$= 1 200 \text{ kg}(-6 \text{ m s}^{-2})$$

= -7 200 N (Tanda negatif menunjukkan daya bertindak pada arah bertentangan arah gerakan kereta)

Latihan Formatif

- 1. Satu daya, F bertindak pada satu jasad berjisim 5 kg.
 - (a) Jika jasad itu memecut secara seragam dari 2 m s-1 ke 8 m s-1 dalam masa 2 saat, tentukan nilai F.

2.6

- (b) Jika nilai F = 10 N, tentukan sesaran jasad itu 6 saat selepas jasad mula bergerak dari keadaan rehat.
- 2. Satu daya 80 N bertindak selama 7 saat ke atas satu objek yang pada asalnya pegun dan menyebabkan objek itu mencapai halaju 35 m s⁻¹. Hitungkan
 - (a) jisim objek itu. 🧠
 - (b) sesaran objek itu. 🦱

Impuls dan Daya Impuls

Gambar foto 2.8 menunjukkan tindakan seorang atlet lompat jauh yang membengkokkan kakinya semasa mendarat. Apakah kesan daripada tindakan itu?

Tindakan membengkokkan kaki itu adalah untuk mengurangkan magnitud daya impuls ke atas badannya. Impuls merupakan perubahan momentum.

Impuls,
$$J = mv - mu$$

= Ft
 $F =$ daya yang dikenakan
 $t =$ masa impak

Gambar foto 2.8 Atlet lompat jauh membengkokkan kakinya

Daya impuls merupakan kadar perubahan momentum dalam perlanggaran atau hentaman dalam masa yang singkat. Rumus daya impuls adalah seperti berikut:

Daya impuls,
$$F = \frac{mv - mu}{t}$$

 $t = \text{masa impak}$
 $mv - mu = \text{perubahan momentum}$

Jika perubahan momentum, mv - mu adalah malar, maka $F \propto \frac{1}{t}$. Jika t adalah kecil, maka magnitud F adalah besar dan sebaliknya.

Tujuan: Membincangkan impuls dan daya impuls

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Cari maklumat berikut dalam laman sesawang yang sesuai.
 - (a) kesan tindakan ikut lajak ke atas magnitud impuls
 - (b) situasi dan aplikasi dalam kehidupan harian yang melibatkan impuls
 - (c) situasi dan aplikasi dalam kehidupan harian yang melibatkan daya impuls, termasuk ciri-ciri keselamatan dalam kenderaan.
- 3. Sediakan satu persembahan multimedia yang ringkas dan bentangkannya.

Video impuls, momentum dan daya impuls

http://bit. ly/2CBLV5e

Sebenarnya, semua situasi yang anda kaji dalam Aktiviti 2.14 melibatkan sepasang daya, iaitu daya tindakan dan daya tindak balas. Hubungan antara daya tindakan dan daya tindak balas dijelaskan oleh Hukum Gerakan Newton Ketiga. Hukum Gerakan Newton Ketiga menyatakan untuk setiap daya tindakan terdapat satu daya tindak balas yang sama magnitud tetapi bertentangan arah. Teliti contoh-contoh situasi dan penerangan yang diberikan di bawah.

Daya tindakan dan daya tindak balas

http://bit. ly/2R7ROMO

Menambah magnitud impuls melalui tindakan ikut lajak

Sepakan yang kuat diikuti tindakan ikut lajak akan menghasilkan impuls yang besar. Dengan itu, bola mengalami perubahan momentum yang besar dan bergerak dengan halaju yang tinggi.

Rajah 2.55 Pemain bola sepak melakukan sepakan

Mengurangkan daya impuls dengan memanjangkan masa impak

Perlanggaran menyebabkan kereta dihentikan dan mengalami suatu perubahan momentum. Bahagian hadapan kereta yang mudah remuk memanjangkan masa impak semasa perlanggaran. Dengan itu, magnitud daya impuls ke atas kereta dikurangkan.

Gambar foto 2.9 Ujian perlanggaran kereta

Meningkatkan daya impuls dengan mengurangkan masa impak

Alu yang bergerak pada halaju yang tinggi dihentikan oleh lesung yang keras dalam sela masa yang singkat. Daya impuls yang besar dihasilkan.

Gambar foto 2.10 Penggunaan batu lesung dan alu

atas kaki

2.7.1

Menyelesaikan Masalah Melibatkan Impuls dan Daya Impuls

Contoh 1

Sebiji bebola plastisin yang berjisim 0.058 kg dilontarkan pada halaju 10 m s⁻¹ dan menghentam dinding. Bebola plastisin itu melekat pada dinding. Berapakah impuls yang terhasil pada bebola plastisin itu?

Penyelesaian:

Langkah 0

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

Jisim,
$$m = 0.058$$
 kg
Halaju awal, $u = 10$ m s⁻¹
Halaju akhir, $v = 0$ m s⁻¹

Impuls,
$$J = mv - mu$$

$$J = 0.058(0) - 0.058(10)$$
$$= 0 - 0.058(10)$$

= 0 - 0.58

= -0.58 N s (pada arah bertentangan dengan halaju plastisin)

Contoh 2

Seorang pemain golf memukul bola golf berjisim 45.93 g pada halaju 50 m s⁻¹. Jika masa impak ialah 0.005 s, berapakah daya impuls yang dikenakan pada bola golf oleh kayu golf?

Penyelesaian:

$$m = 0.04593 \text{ kg}, u = 0 \text{ m s}^{-1}, v = 50 \text{ m s}^{-1}, t = 0.005 \text{ s}$$

Daya impuls,
$$F = \frac{mv - mu}{t}$$

$$= \frac{0.04593(50) - 0.04593(0)}{0.005}$$

= 459.3 N (bertindak pada arah sama dengan halaju bola golf)

Latihan Formatif

2.7

- 1. Dalam suatu ujian perlanggaran kereta, sebuah kereta berjisim 1 500 kg melanggar dinding dengan kelajuan 15 m s⁻¹. Kereta itu melantun semula dengan kelajuan 2.6 m s⁻¹. Jika masa perlanggaran ialah 0.15 s, hitungkan,
 - (i) impuls yang terhasil dalam perlanggaran, dan
 - (ii) daya impuls yang dikenakan pada kereta.
- 2. Seorang pemain bola sepak menendang sebiji bola yang berjisim 450 g dengan daya 1 500 N. Masa sentuhan kasutnya dengan bola ialah 0.008 s. Berapakah impuls yang dikenakan pada bola? Jika masa sentuhan itu ditambahkan sehingga 0.013 s, berapakah halaju bola itu?

2.8 Berat

Gambar foto 2.11 menunjukkan seorang atlet acara angkat berat menjuak barbel. Daya tarikan graviti Bumi yang bertindak ke atas barbel itu menyumbang kepada berat barbel tersebut. Berat barbel menyebabkan atlet itu berasa sukar untuk mengangkatnya.

Barbel itu akan jatuh ke lantai dengan suatu pecutan apabila atlet itu melepaskannya. Menurut Hukum Gerakan Newton Kedua,

Gambar foto 2.11 Menjuak barbel

$$F = ma$$

$$\downarrow \qquad \qquad \downarrow$$

$$W = mg$$

- Daya graviti yang bertindak ke atas barbel ialah beratnya, W.
- Pecutan barbel itu ialah pecutan graviti, g.

Berat ialah kuantiti vektor yang bertindak ke arah pusat Bumi.

Unit bagi berat: N
Unit bagi jisim: kg

 $g = \frac{W}{m}$ Unit bagi g

W = mg

Unit bagi g: N kg-1

Kuantiti fizik, g dengan unit N kg⁻¹ ialah kekuatan medan graviti. Kekuatan medan graviti, g ialah daya yang bertindak per unit jisim disebabkan tarikan graviti. Bagi objek di permukaan Bumi, kekuatan medan graviti ialah, g = 9.81 N kg⁻¹, iaitu setiap 1 kg jisim akan mengalami daya graviti 9.81 N. Bolehkah anda menghitung berat anda di permukaan Bumi?

Gambar foto 2.12 menunjukkan seorang angkasawan yang memakai sut angkasawan semasi meneroka Bulan. Angkasawan berasa sukar untuk berjalan di atas permukaan Bumi berbanding dengan Bulan. Mengapakah keadaan ini berlaku?

Gambar foto 2.12 Angkasawan yang memakai sut angkasawan di Bulan

Pergerakan angkasawan di Bulan

http://bit. ly/2ZzPq70

Dato Dr. Sheikh Muszaphar Shukor bin Sheikh Mustapha merupakan angkasawan pertama negara kita.

Jisim sut angkasawan di Bumi ialah 81.65 kg.

$$W_{\text{Bumi}} = 81.65 \text{ kg} \times 9.81 \text{ N kg}^{-1}$$

= 800.99 N

Kekuatan medan graviti di Bulan ialah $\frac{1}{6}$ daripada kekuatan medan graviti Bumi.

$$W_{\text{Bulan}} = \frac{1}{6} \times 800.99 \text{ N}$$

= 133.50 N

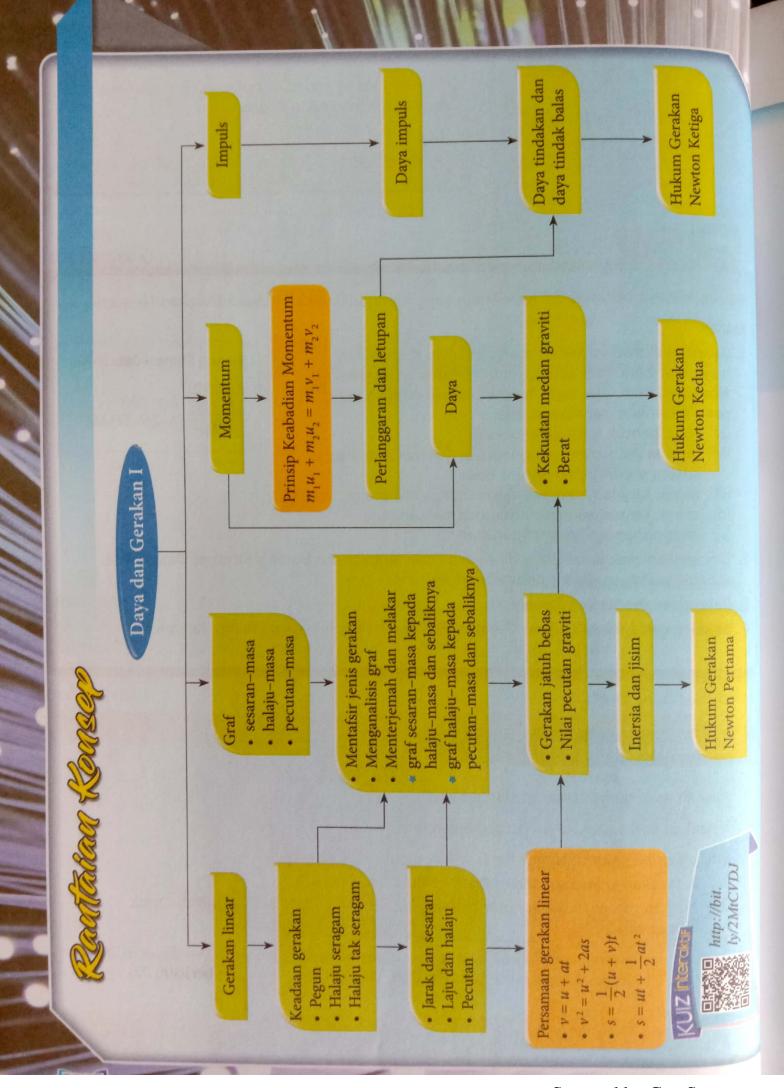
Borang Strategi Data K-W-L

http://bit.

ly/2HnTOAO

Tujuan: Mereka cipta model kenderaan yang mengaplikasikan Hukum Gerakan Newton.

Arahan:


- 1. Jalankan aktiviti ini secara berkumpulan. Kumpulkan maklumat berkaitan aplikasi Hukum-hukum Gerakan Newton dalam reka cipta kereta. Antara perkara yang perlu diberikan penekanan ialah:
 - (a) rupa bentuk model kenderaan
 - (b) jenis enjin, sistem penghantaran, sistem ampaian, sistem stereng dan sistem brek
 - (c) aspek keselamatan pemandu dan penumpang
 - (d) aspek keselesaan pemandu dan penumpang
 - (e) jenis bahan api yang digunakan
- 2. Bincangkan maklumat yang diperlukan dan lengkapkan Borang Strategi Data K-W-L sebagai panduan dalam pencarian maklumat.
- 3. Reka cipta model kenderaan.
- 4. Bentangkan aplikasi Hukum Gerakan Newton dalam reka cipta kumpulan anda.

Latihan Formatif

2.8

- 1. Apakah maksud kekuatan medan graviti?
- 2. Nyatakan perbezaan antara jisim dengan berat.
- 3. Satu objek 10 kg mempunyai berat 150 N di atas sebuah planet.
 - (a) Berapakah kekuatan medan graviti planet tersebut?
 - (b) Adakah planet itu lebih besar berbanding dengan Bumi? Berikan sebab untuk jawapan anda. 🧠
- 4. Seorang angkasawan berjisim 60 kg ditugaskan untuk melaksanakan penerokaan di Bulan. Berapakah berat angkasawan itu di permukaan Bulan? 🧆

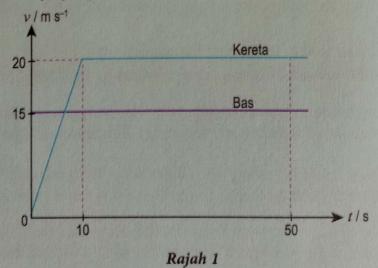
Scanned by CamScanner

REFLEKSI KENDIRI

dalam bab ini.

Penilaian Prestasi

- 1. Sebuah kereta memecut daripada keadaan pegun dengan pecutan 2.0 m s⁻². Hitungkan
 - (a) halaju kereta selepas 5.0 s,
 - (b) jarak yang dilalui dalam 5.0 s, dan
 - (c) jarak yang dilalui dalam saat kelima.
- 2. En. Nizam sedang memandu kereta pada laju 108 km j⁻¹. Tiba-tiba beliau nampak sebuah kereta di hadapannya bergerak dengan sangat perlahan. Maka, En. Nizam pun memperlahankan kereta beliau sehingga mencapai kelajuan 72 km j⁻¹. Sesaran yang dilalui oleh kereta itu ialah 125 m. Jika pecutan yang dialami oleh kereta adalah seragam, hitungkan
 - (a) pecutan yang dialami oleh kereta En. Nizam, dan
 - (b) masa yang diambil semasa kelajuan kereta berkurang dari 108 km j⁻¹ ke 72 km j⁻¹.
- 3. Swee Lan mendayung sebuah sampan ke hadapan. Dia menggunakan dayung untuk menolak air ke belakang. Mengapakah sampan itu dapat digerakkan ke hadapan dengan cara ini?
- 4. Sebuah kereta berjisim 1 200 kg yang pegun digerakkan dengan daya 150 N. Tentukan pecutan kereta itu dan masa yang diambil untuk kereta itu mencapai halaju 1.5 m s⁻¹.
- 5. Kekuatan medan graviti di permukaan Bulan ialah 6 kali lebih rendah daripada permukaan Bumi. Jika seketul batu yang beratnya 2 N dibawa pulang dari Bulan ke Bumi, hitungkan berat batu itu di Bumi.
- **6.** Sebutir peluru yang berjisim 10 g ditembak keluar dari senapang yang berjisim 2.0 kg. Jika halaju senapang yang tersentak selepas tembakan dilepaskan ialah 0.5 m s⁻¹, hitungkan halaju peluru yang ditembak keluar.


7. Gambar foto 1 menunjukkan sebuah kereta yang bergerak di atas jalan raya. Pada awalnya kereta itu bergerak dengan halaju seragam 18 m s⁻¹ selama 15 s. Kemudian, kereta tersebu memecut dengan pecutan 1.5 m s⁻² selama 5 s. Selepas itu, halaju kereta mula berkurang kepada 15 m s⁻¹ dalam masa 5 s. Kereta itu terus bergerak dengan halaju yang sama selama 10 s dan akhirnya halaju berkurang sehingga berhenti pada t = 50 s.

Gambar foto 1

Berdasarkan maklumat yang diberikan, lakarkan graf halaju-masa bagi gerakan kereta itu. Tunjukkan nilai-nilai yang penting dalam lakaran anda. 🦇

- 8. Sebiji bola getah dilepaskan dari ketinggian, H. Bola itu jatuh tegak ke bawah dan apabila sampai ke lantai, melantun balik setinggi h (h < H). Jika halaju semasa bergerak ke bawah adalah negatif, lakarkan graf halaju-masa untuk pergerakan bola getah itu. 🥌
- 9. Sebuah kereta mula bergerak daripada keadaan rehat apabila sebuah bas yang bergerak dengan halaju seragam 15 m s⁻¹ melintas sisinya. Kereta tersebut mencapai halaju 20 m s⁻¹ dalam masa 10 saat dan terus bergerak dengan halaju yang malar dalam arah yang sama dengan arah pergerakan bas. Graf dalam Rajah 1 menunjukkan pergerakan kereta dan bas tersebut di atas jalan raya yang lurus.

- (a) Hitungkan masa yang diambil untuk kereta itu mencapai laju yang sama dengan bas tersebut.
- (b) Berapakah sesaran untuk kereta mencapai kelajuan bas itu?
- (c) Hitungkan jarak yang dilalui oleh kereta dan bas pada masa t = 50 s.
- (d) Adakah kereta berada di hadapan bas atau sebaliknya pada masa t = 50 s?

10. Gambar foto 2 menunjukkan sebuah kapal angkasa yang dilancarkan menggunakan roket dari tapak pelancaran.

Gambar foto 2

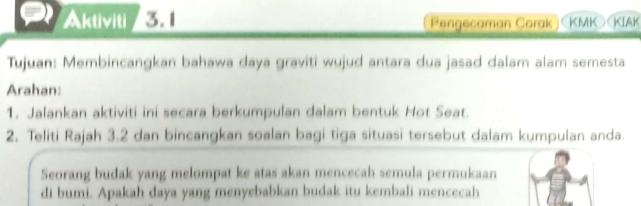
- (a) Terangkan bagaimana pelepasan gas panas melalui ekzos roket dapat memecutkan roket ke atas.
- (b) Bagaimanakah pecutan roket ini boleh ditambahkan? 🦇
- 11. Gambar foto 3 menunjukkan sebuah hoverkraf yang dapat bergerak di darat atau di atas permukaan air dengan pantas kerana disokong oleh suatu lapisan udara yang terperangkap di bawahnya. Hoverkraf yang berjisim 25 000 kg, bermula daripada keadaan rehat dan kipas enjinnya menjanakan satu daya tujahan, F sebanyak 22 000 N.
 - (a) Tentukan pecutan awal hoverkraf itu dengan menganggap bahawa tiada kesan geseran pada ketika itu. 🧠

Gambar foto 3

(b) Apakah fungsi lapisan udara yang terperangkap di bawah hoverkraf itu? 🧆

Sudut Pengayaan

- 12. Kok Chew dan Zulkefli ingin menentukan pecutan graviti Bumi. Mereka bercadang menggunakan bola pingpong yang akan dilepaskan dari tingkat tiga bangunan sekolah mereka. Bincangkan kesesuaian penggunaan bola pingpong dalam eksperimen ini. 🧆
- 13. Andaikan diri anda sebagai seorang jurutera yang ditugaskan untuk mencipta model kereta api laju di Malaysia. Kereta api ini perlu bergerak laju dengan cara terapung di atas landasan. Lukiskan model kereta api anda dan senaraikan ciri-cirinya dengan mengambil kira rupa bentuk, bahan, cara pergerakan dan aspek keselamatan yang digunakan oleh model kereta api anda. 🧠



Hukum Kegnaylifan Semesia Newton Ayah, mengapakah INTEGRASI SEJARAH durian jatuh terus Ayah, mengapakah ke bumi? Hahaha anak-anak Pada tahun 1667. Bulan bolch bergerak ayah berfikir seperti saintis Isaac Newton mengelilingi Bumi? Isaac Newton pula. telah memerhatikan buah epal yang atuh secara tegak ke Bumi dan gerakan Bulan mengelilingi Bumi. Beliau menyimpulkan suatu daya tarikan bukan sahaja wujud antara Bumi dengan buah epal tetapi juga antara Bumi dengan Bulan.

Rajah 3.1 Situasi di dusun durian

permukaan bumi?

Molekul udara kekal dalam atmosfera tanpa terlepas ke angkasa. Apakah daya yang bertindak antara molekul atmosfera dengan Bumi?

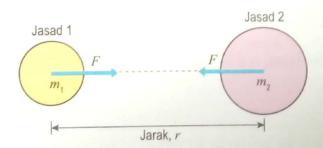
Bulan boleh bergerak dalam orbitnya mengelilingi Bumi tanpa terlepas ke angkasa. Bumi mengenakan suatu daya graviti ke atas Bulan, adakah Bulan juga mengenakan daya graviti ke atas Bumi?

Rajah 3.2 Situasi yang melibatkan daya graviti antara dua jasad

Layari laman sesawang untuk mengumpulkan maklumat yang berkaitan.

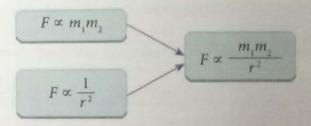
(3.1.1)

Daya graviti dikenali sebagai daya semesta kerana daya graviti bertindak antara mana-mana dua jasad dalam alam semesta. Rajah 3.3 menunjukkan daya graviti antara Matahari, Bumi dengan Bulan. Bagaimanakah daya graviti antara dua jasad dapat diterangkan?



EduwebTV: Daya graviti

Rajah 3.3 Daya graviti sebagai daya semesta


Pada tahun 1687, Isaac Newton mengemukakan dua hubungan yang melibatkan daya graviti antara dua jasad.

- Daya graviti berkadar terus dengan hasil darab jisim dua jasad, iaitu $F \propto m_1 m_2$
- Daya graviti berkadar songsang dengan kuasa dua jarak di antara pusat dua jasad tersebut, iaitu $F \propto \frac{1}{r^2}$

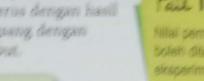
Rajah 3.4 Daya graviti antara dua jasad

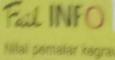
Dua hubungan di atas dirumuskan seperti dalam Rajah 3.5 untuk memperoleh **Hukum Kegravitian Semesta Newton**.

Rajah 3.5 Rumusan Hukum Kegravitian Semesta Newton

Fail INFO

- Daya graviti wujud secara berpasangan.
- 2 Dua jasad itu masing-masing mengalami daya graviti dengan magnitud yang sama.


Fail INFO


Mengapakah daun yang layu itu bergerak ke arah Bumi?

Kedua-dua daun dan Bumi mengalami daya graviti yang sama. Hal ini menyebabkan daun dan Bumi bergerak mendekati satu sama lain. Oleh sebab jisim Bumi jauh lebih besar daripada jisim daun, daya graviti tidak ada kesan yang ketara ke atas pergerakan Bumi. Oleh itu, pemerhati di Bumi hanya memerhati daun itu jatuh ke arah Bumi.

Hukum Kegravitian Semesta Newton menyatakan bahawa daya graviti antara dua jasad adalah berkadar terus dengan hasil darah jisim kedua-dua jasad dan berkadar songsang dengan kuasa dua jarak di antara pusat dua jasad tersebut.

Nilai pemalar kegravitlan, G boleh ditentukan melalui aksperimen.

Hukum Kegravitian Semesta Newton boleh diungkapkan seperti berikut.

$$F = \frac{Gm_1m_2}{r^2}$$

F = daya graviti antara dua jasad

m, = jisim jasad pertama

m, = jisim jasad kedua

r = jarak di antara pusat jasad pertama dengan pusat jasad kedua

 $G = \text{pemalar kegravitian} (G = 6.67 \times 10^{-11} \text{ M m}^2 \text{ kg}^2)$

Dua jasad yang berjisim m, dan m, yang terpisah sejauh r akan mengalami daya graviti, F.

$$F = \frac{Gm_1m_2}{r^2}$$

Sekiranya anda mengetahui jisim dua jasad dan jarak di antara pusat dua jasad tersebut, anda boleh menghitung magnitud daya graviti antara dua jasad. Teliti contoh-contoh soalan dan penyelesaian yang diberikan.

Contoh 1

Hitungkan daya graviti antara sebiji buah durian dengan Bumi.

Jisim durian = 2.0 kg

Jisim Bumi = 5.97×10^{24} kg

Jarak di antara pusat durian dengan pusat Bumi = 6.37 × 106 m

Rajah 3.6

Penyelesaian:

Langkah O

Senaraikan maklumat yang diberi dengan simbol.

$$m_1 = 2.0 \text{ kg}$$

 $m_1 = 5.97 \times 10^{24} \text{ kg}$
 $r = 6.37 \times 10^6 \text{ m}$
 $G = 6.67 \times 10^{-11} \text{ N} \text{ m}^3 \text{ kg}^{-2}$

Langkah @

Kenal pasti dan tulis rumus yang digunakan.

$$\begin{cases} \text{Daya graviti,} \\ F = \frac{Gm_1m_2}{r^2} \end{cases}$$

Langkah @

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$F = \frac{(6.67 \times 10^{-11}) \times 2.0 \times (5.97 \times 10^{31})}{(6.37 \times 10^{6})^{3}}$$
$$= 19.63 \text{ N}$$

Contoh 2

Sebuah roket yang berada di tapak pelancaran mengalami daya graviti 4.98 × 10⁵ N. Berapakah jisim roket itu?

[Jisim Bumi = 5.97×10^{24} kg, jarak di antara pusat Bumi dengan roket itu = 6.37×10^6 m]

Penyelesaian:

Daya graviti,
$$F = 4.98 \times 10^5$$
 N
Jisim Bumi, $m_1 = 5.97 \times 10^{24}$ kg
Jisim roket = m_2
Jarak di antara pusat Bumi dengan
roket itu,
 $r = 6.37 \times 10^6$ m

Daya graviti,
$$F = \frac{Gm_1m_2}{r^2}$$

$$4.98 \times 10^5 = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24}) \times m_2}{(6.37 \times 10^6)^2}$$

$$m_2 = \frac{(4.98 \times 10^5) \times (6.37 \times 10^6)^2}{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}$$

$$= 5.07 \times 10^4 \text{ kg}$$

Menyelesaikan Masalah Melibatkan Hukum Kegravitian Semesta Newton

Daya graviti bertindak antara mana-mana dua jasad di Bumi, planet, Bulan dan Matahari. Apakah kesan jisim dan jarak di antara dua jasad ke atas daya graviti?

 $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Pemikiran Logik KBMM

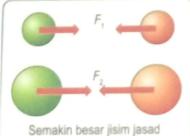
Tujuan: Menyelesaikan masalah melibatkan Hukum Kegravitian Semesta Newton bagi dua jasad pegun di Bumi

Arahan:

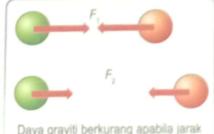
- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Andaikan diri anda dan pasangan anda sebagai jasad pegun di Bumi.
- 3. Catatkan jisim anda, m_1 dan jisim rakan anda, m_2 dalam Jadual 3.1.

Jadual 3.1

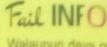
	Jisim		r/m	F/N
Pasangan	m, / kg	m_2/kg	7 / 111	
1	- Allerian A	d-man, Asi	2.0	Sandy .
			4.0	
2			2.0	
			4.0	


- 4. Hitungkan daya graviti, F menggunakan jisim anda berdua dan jarak yang diberikan dalam jadual tersebut.
- 5. Kemudian, bertukar pasangan dan ulangi langkah 3 dan 4.

Perbincangan:


- 1. Bagaimanakah jisim dua jasad mempengaruhi daya graviti antara dua jasad itu?
- 2. Apakah kesan jarak antara dua jasad ke atas daya graviti antara dua jasad itu?
- 3. Mengapakah daya graviti antara anda dengan rakan anda mempunyai magnitud yang kecil?

Kesan jisim dan jarak di antara dua jasad pegun di Bumi ke atas daya graviti ditunjukkan dalam Rajah 3.7


semakin besar daya graviti. F, < F,

Daya graviti berkurang apabila jarak di antara dua jasad bertambah. $F_{\cdot} > F_{\cdot}$

Rajah 3.7 Kesan jisim dan jarak antara dua jasad ke atas daya graviti

Daya graviti antara dua jasad bergantung pada jisim jasad dan juga jarak di antara dua jasad itu.

Walaupun daya graviti merupakan daya semesia, du orang di permukaan Bumi tida akan merasai kesan daya grav antara satu sama lain. Hal ini kerana daya graviti antara dua jasad berjisim kecil mempunya magnitud yang sangat kecil. Contohnya dua orang yang masing-masing berjisim 50 kg dan 70 kg hanya mengalami daya graviti sebanyak 2.3 × 10-7 N jika mereka bergi sejauh 1 m dari satu sama tair

Aktiviti 3.3

Peniskalaan (KBM



Tujuan: Menyelesaikan masalah melibatkan Hukum Kegravitian Semesta Newton bagi

- (i) jasad di atas permukaan bumi
- (ii) Bumi dan satelit
- (iii) Bumi dan Matahari

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Teliti Rajah 3.8 dan jawab soalan-soalan yang diberikan.

Rajah 3.8 Matahari, Bumi, Bulan dan satelit buatan

Perbincangan:

- 1. Berapakah daya graviti ke atas satelit itu sebelum satelit itu dilancarkan?
- 2. Bandingkan
 - (a) jisim Bumi, jisim satelit dan jisim Matahari, serta
 - (b) jarak di antara Bumi dengan satelit dan jarak di antara Matahari dengan Bumi.
- 3. Ramalkan perbezaan antara magnitud daya graviti Bumi dan satelit dengan daya graviti Matahari dan Bumi.
- 4. Hitungkan
 - (a) daya graviti antara Bumi dengan satelit, serta
 - (b) daya graviti antara Bumi dengan Matahari.

Adakah jawapan anda sepadan dengan ramalan anda di soalan 3?

5. Daya graviti antara Bumi dengan Bulan ialah 2.00 x 10²⁰ N. Berapakah jarak di antara pusat Bumi dengan pusat Bulan?

Menghubung Kait Pecutan Graviti, g di Permukaan Bumi dengan Pemalar Kegravitian Semesta, G

Menurut Hukum Gerakan Newton Kedua, daya graviti boleh diungkapkan sebagai, F = mg. Daripada Hukum Kegravitian Semesta Newton, daya graviti, diungkapkan sebagai $F = \frac{Gm_1m_2}{r^2}$ Apakah hubung kait antara g dengan G?

Fail INF

Daripada Hukum Gerakan Newton Kedua,

F = ma

Apabila melibatkan pecutan graviti, g,

F = mg

Algoritma (KBMM)

Tujuan: Menerbitkan rumus pecutan graviti, g menggunakan rumus F = mg dan $F = \frac{GMm}{r^2}$

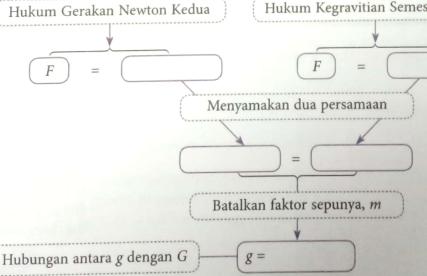
Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Muat turun Rajah 3.9 daripada laman sesawang yang diberikan di sebelah.
- 3. Bincangkan dan lengkapkan Rajah 3.9 untuk menerbitkan hubungan antara g dengan G.

Muat turun Rajah 3.9

http://bit. ly/2Rldzxr

M = jisim Bumi


m = jisim objek

r = jarak di antara pusat Bumi dengan pusat objek

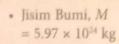
Daya graviti yang menyebabkan objek jatuh dengan pecutan graviti Bumi, g

Daya graviti yang menarik objek ke arah pusat Bumi

Hukum Kegravitian Semesta Newton

Rajah 3.9 Hubungan antara g dengan G

Perbincangan:


- 1. Apakah hubungan antara pecutan graviti, g dengan pemalar kegravitian semesta, G?
- 2. Apakah faktor-faktor yang mempengaruhi nilai pecutan graviti?

Tujuan: Membincangkan variasi nilai g dengan r

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Hitungkan nilai pecutan graviti pada lima jarak yang diberikan dalam Rajah 3.10.

- Jejari Bumi, R $= 6.37 \times 10^6 \text{ m}$
- · Pemalar kegravitian, G $= 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Bumi

http://bit. ly/2FrmFSb

Pecutan graviti di bawah

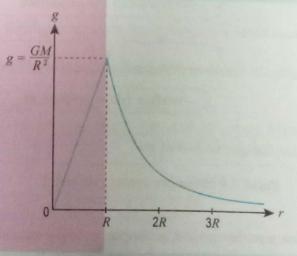
permukaan Bumi

2R3R4R5R

Rajah 3.10

3. Lengkapkan Jadual 3.2.

Jadual 3.2


Jarak dari pusat Bumi, r	R	2R	3 <i>R</i>	4R	5R
Pecutan graviti, g / m s ⁻²				David 58	11 = 14

Perbincangan:

- 1. Berapakah nilai pecutan graviti di permukaan Bumi?
- 2. Plotkan graf g melawan r.
- 3. Bagaimanakah nilai pecutan graviti berubah apabila jarak dari pusat Bumi bertambah?
- 4. Bincangkan keadaan apabila pecutan graviti mempunyai nilai hampir sifar.

Rajah 3.11 menunjukkan lakaran graf bagi variasi nilai pecutan graviti, g dengan jarak, r dari pusat Bumi.

Nilai g adalah berkadar terus dengan jarak dari pusat Bumi bagi kedudukan r < R.

Nilai g adalah berkadar songsang dengan kuasa dua jarak dari pusat Bumi bagi kedudukan $r \ge R$.

Rajah 3.11 Variasi g dengan r

Rajah 3.12 menunjukkan sebuah satelit pada ketinggian, h dari permukaan Bumi. R merupakan jejari Bumi dan r ialah jarak satelit itu dari pusat Bumi, iaitu jejari orbit.

Di kedudukan dengan ketinggian, h dari permukaan Bumi, jarak dari pusat Bumi ialah r = (R + h)

Dengan itu, pecutan graviti, $g = \frac{GM}{(R+h)^2}$

Di permukaan Bumi, ketinggian, h = 0. Maka, r = jejari Bumi, R.

Pecutan graviti di permukaan Bumi, $g = \frac{GM}{R^2}$ M ialah jisim Bumi

Rajah 3.12 Sebuah satelit pada ketinggian h dari permukaan Bumi

Contoh 1

Jisim Bumi ialah 5.97×10^{24} kg dan jejari Bumi ialah 6.37×10^6 m. Hitungkan pecutan graviti di permukaan Bumi. $[G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}]$

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan perhitungan.

$$\begin{cases} M = 5.97 \times 10^{24} \text{ kg} \\ G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \\ r = 6.37 \times 10^6 \text{ m} \end{cases}$$

$$g = \frac{GM}{r^2}$$

$$g = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}{(6.37 \times 10^{6})^{2}}$$
$$= 9.81 \text{ m s}^{-2}$$

Contoh 2

Sebuah satelit pengimejan radar mengorbit mengelilingi Bumi pada ketinggian 480 km. Berapakah nilai pecutan graviti di kedudukan satelit itu? $[G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}, M = 5.97 \times 10^{24} \text{ kg}, R = 6.37 \times 10^6 \text{ m}]$

Penyelesaian:

Ketinggian orbit,
$$h = 480 \text{ km}$$

= 480 000 m

$$g = \frac{GM}{(R+h)^2}$$

$$= \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}{(6.37 \times 10^6 + 480\ 000)^2}$$

$$= 8.49 \text{ m/s}^{-2}$$

Kepentingan Mengetahui Nilai Pecutan Graviti

Daya graviti merupakan daya semesta. Oleh itu, rumus $g = \frac{GM}{n^2}$

boleh digunakan untuk menghitung pecutan graviti di permukaan jasad lain seperti planet, Bulan dan Matahari. Planet yang manakah mempunyai pecutan graviti yang paling besar? Planet yang manakah mempunyai pecutan graviti paling kecil?

Pemikiran Logik KBMM KIAK

Tujuan: Membuat perbandingan pecutan graviti yang berbeza bagi Bulan, Matahari dan planet-planet dalam Sistem Suria

- 1. Jalankan aktiviti ini secara berpasangan dalam bentuk Think-Pair-Share.
- 2. Cari maklumat jisim, M dan jejari, R untuk Matahari, Bulan serta planet-planet dalam Sistem Suria.
- Persembahkan maklumat yang dicari dalam bentuk jadual.
- Hitungkan pecutan graviti, g bagi setiap jasad tersebut.

Perbincangan:

- 1. Planet yang manakah mempunyai pecutan graviti yang paling besar?
- 2. Planet yang manakah mempunyai pecutan graviti yang paling hampir dengan pecutan graviti Bumi?
- 3. Apakah faktor-faktor yang menentukan nilai pecutan graviti sebuah planet?

Apabila nilai pecutan graviti di permukaan sebuah planet diketahui, magnitud daya graviti yang bertindak ke atas sesuatu objek di permukaan planet boleh dihitung. Pengetahuan mengenai nilai pecutan graviti memainkan peranan yang penting dalam penerokaan angkasa dan kelangsungan kehidupan.

Aktiviti 3.7

Pemikiran Logik KMK KIAK

Tujuan: Membincangkan kepentingan pengetahuan tentang pecutan graviti planet-planet dalam penerokaan angkasa dan kelangsungan kehidupan

Arahan:

- Jalankan aktiviti ini secara berkumpulan.
- 2. Cari maklumat mengenai kepentingan pengetahuan tentang pecutan graviti planet-planet dalam penerokaan angkasa dan kelangsungan kehidupan.
- 3. Persembahkan hasil perbincangan anda dalam bentuk peta pemikiran yang sesuai.

Pecutan graviti

https://go.nasa. gov/2FPIxqJ

Di Bumi, manusia hidup dalam persekitaran yang mempunyai pecutan graviti, 9.81 m s-2. Semasa penerokaan angkasa sama ada jauh dari Bumi atau berhampiran dengan planet lain, badan angkasawan boleh terdedah kepada keadaan graviti rendah atau graviti tinggi. Apakah kesan graviti terhadap tumbesaran manusia?

Pemikiran Logik (KIAK) (KMK

Tujuan: Mengumpul maklumat tentang kesan graviti terhadap tumbesaran manusia Arahan:

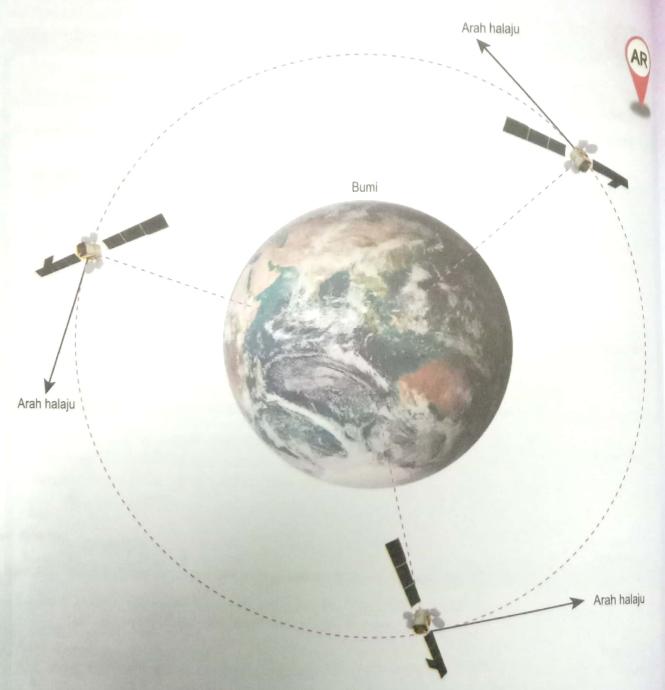
1. Jalankan aktiviti ini secara berkumpulan dalam bentuk Round Table.

Jadual 3.3

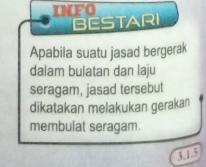
Faktor	Kesan graviti rendah	Kesan graviti tinggi
Perubahan ketumpatan		
Kerapuhan tulang		
Saiz peparu		
Sistem peredaran darah		
Tekanan darah		

- 2. Berdasarkan Jadual 3.3, dapatkan maklumat mengenai kesan graviti terhadap tumbesaran manusia dengan melayari laman sesawang atau daripada bahan bacaan yang sesuai.
- Lengkapkan Jadual 3.3.
- 4. Bentangkan satu persembahan multimedia bertajuk Kesan Graviti Terhadap Tumbesaran Manusia.

Kesan graviti


https://go.nasa. gov/2D3rkIq

(3.1.4)


Daya Memusat dalam Sistem Gerakan Satelit dan Planet

Rajah 3.13 menunjukkan tiga kedudukan bagi sebuah satelit yang sedang mengorbit Bumi dengan laju seragam. Perhatikan arah halaju satelit di setiap kedudukan satelit itu.

Rajah 3.13 Satelit membuat gerakan membulat

Jasad yang sedang membuat gerakan membulat sentiasa mengalami perubahan arah gerakan walaupun lajunya tetap. Oleh itu, halaju jasad adalah berbeza. Dalam Bab 2, anda telah mempelajari bahawa suatu daya diperlukan untuk mengubah arah gerakan jasad. Apakah daya yang bertindak ke atas jasad yang sedang membuat gerakan membulat?

Pemberat berslot menegangkan benang untuk bertindak sebagai

daya memusat apabila penyumbat getah membuat

gerakan membulat.

Tujuan: Memahami daya memusat menggunakan Kit Daya Memusat

Radas: Kit Daya Memusat (terdiri daripada tiub plastik, penyumbat getah, penggantung pemberat berslot 50 g, tiga buah pemberat berslot 50 g, klip buaya dan benang tebal) dan pembaris

Arahan:

1. Sediakan radas seperti yang ditunjukkan dalam Rajah 3.14 untuk gerakan membulat dengan jejari, r = 50 cm. Jumlah jisim pemberat berslot dan penggantung ialah 100 g.

Rajah 3.14

2. Pegang tiub plastik dengan tangan kanan dan pemberat berslot dengan tangan kiri anda. Putarkan penyumbat getah itu dengan laju yang malar dalam suatu bulatan ufuk di atas kepala anda seperti yang ditunjukkan dalam Rajah 3.15. Pastikan klip buaya berada pada jarak hampir 1 cm dari hujung bawah tiub plastik supaya jejari bulatan adalah tetap.

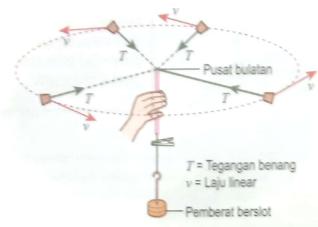
Rajah 3.15

Video demonstrasi menggunakan Kit Daya Memusat

http://bit. lv/2W6r42m

- 3. Lepaskan pemberat berslot dan terus putarkan penyumbat getah itu. Perhatikan laju pergerakan penyumbat getah itu.
- 4. Ulangi langkah 1 hingga 3 dengan jumlah pemberat berslot 200 g. Bandingkan laju pergerakan penyumbat getah dengan laju pergerakan sebelum ini.
- 5. Ulangi langkah 4. Semasa penyumbat getah itu berputar, tarik hujung bawah benang dalam arah ke bawah supaya penyumbat getah berputar dengan jejari yang semakin kecil. Perhatikan bagaimana tegangan benang yang bertindak ke atas tangan kiri anda berubah.

Perbincangan:


- 1. Apabila penyumbat getah itu membuat gerakan membulat, benang yang tegang mengenakan daya ke atas penyumbat getah itu. Apakah arah daya yang bertindak ke atas penyumbat getah itu?
- 2. Apakah hubungan antara laju penyumbat getah dengan daya memusat?
- 3. Bagaimanakah daya memusat berubah apabila penyumbat getah membuat gerakan membulat dengan jejari yang lebih kecil?

Bagi suatu jasad yang melakukan gerakan membulat, terdapat suatu daya yang bertindak ke atasnya dengan arah yang sentiasa menuju ke pusat bulatan itu. Daya ini dikenali sebagai daya memusat.

Rajah 3.16 menunjukkan tegangan benang yang bertindak sebagai daya memusat untuk gerakan penyumbat getah. Magnitud daya memusat bergantung pada jisim jasad, laju linear gerakan membulat dan jejari bulatan. Daya memusat boleh dihitung menggunakan rumus:

$$F = \frac{mv^2}{r}$$
, $F = \text{daya memusat}$
 $m = \text{jisim}$
 $v = \text{laju linear}$
 $r = \text{jejari bulatan}$

Rajah 3.16 Tegangan benang sebagai daya memusat

Apabila suatu jasad diputar pada laju seragam tertentu sehingga benang menjadi hampir mengufuk, kesan daya graviti ke atas gerakan membulat jasad itu boleh diabaikan. Walaupun laju jasad adalah seragam, arah, gerakan jasad sentiasa berubah

Laju linear merujuk kepada laju jasad pada suatu ketika tertentu semasa jasad membuat gerakan membulat.

Contoh 1

Rajah 3.17 menunjukkan seorang atlet acara lontar tukul besi yang sedang memutarkan tukul besi dalam suatu bulatan ufuk sebelum melepaskannya. Berapakah daya memusat yang bertindak ke atas tukul besi apabila tukul besi itu sedang bergerak dengan laju seragam 20 m s-1?

Rajah 3.17

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

$$\begin{cases} m = 7.2 \text{ kg} \\ v = 20 \text{ m s}^{-1} \\ r = 1.8 \text{ m} \end{cases}$$

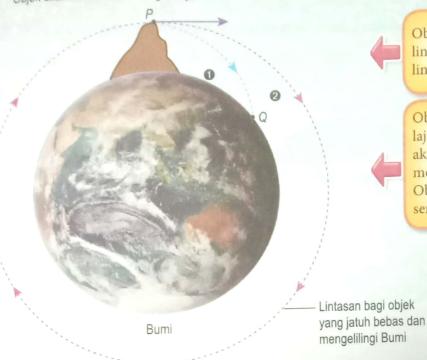
$$\begin{cases} F = \frac{mv^2}{r} \end{cases}$$

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

$$F = \frac{mv^2}{r}$$

Langkah


Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

Daya memusat,
$$F = \frac{7.2 \times 20^2}{1.8}$$

= 1 600 N

Bolehkah sebuah satelit mengorbit mengelilingi Bumi tanpa dipacu oleh enjin roket? Kemungkinan untuk gerakan sedemikian telah diramal oleh Isaac Newton pada abad ke-17 seperti yang ditunjukkan dalam Rajah 3.18.

AR

Objek dilancarkan dari P dengan laju linear, v

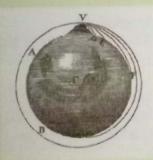
Objek yang dilancarkan dengan laju linear yang rendah akan mengikuti lintasan **1** dan tiba di Bumi di Q.

Objek yang dilancarkan dengan laju linear yang cukup tinggi akan mengikut lintasan ② yang membulat mengelilingi Bumi. Objek itu tidak akan kembali semula ke Bumi.

Simulasi ramalan saintis Isaac Newton

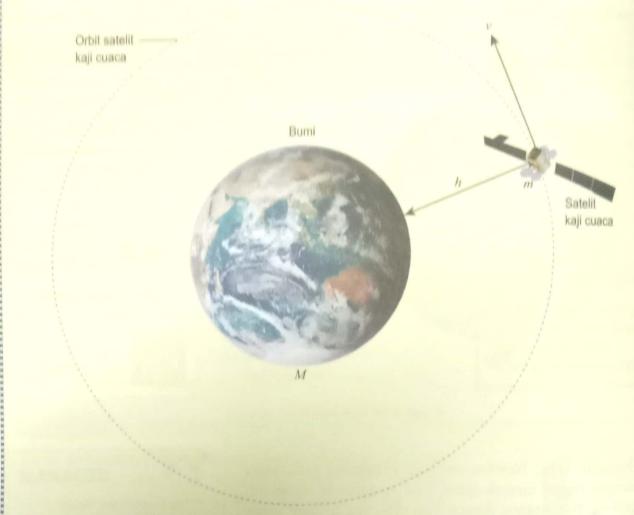
http://bit. ly/2V0OHrK

Rajah 3.18 Ramalan Isaac Newton


Ramalan Isaac Newton menjadi kenyataan pada masa kini dengan begitu banyak satelit buatan manusia mengorbit mengelilingi Bumi tanpa dipacu oleh sebarang tujahan roket. Satelit-satelit sentiasa mengalami daya graviti yang bertindak ke arah pusat Bumi. Daya graviti ke atas satelit bertindak sebagai daya memusat.

Dengan membanding rumus untuk daya, F = ma dan rumus untuk daya memusat, $F = \frac{mv^2}{r}$, kita peroleh: Pecutan memusat, $a = \frac{v^2}{r}$, iaitu v =laju linear satelit

INTEGRASI SEJARAH


Walaupun Isaac Newton tidak ada kemudahan untuk melakukan simulasi atau eksperimen, beliau mampu membayangkan eksperimen tentang pergerakan jasad mengelilingi Bumi. Lakaran asal beliau ditunjukkan di bawah.

r = jejari orbit satelit

Contohil

Rajah 3.19 menunjukkan sebuah satelit kaji cuaca yang sedang mengorbit mengelilingi Bumi pada ketinggian. h=480 km. Laju linear satelit itu ialah $7.62\times10^{\circ}$ m s $^{\circ}$. Jejari Bumi, $R=6.37\times10^{\circ}$ m. Berapakah pecutan memusat satelit itu?

Rajah 3.19

Penyelesaian:

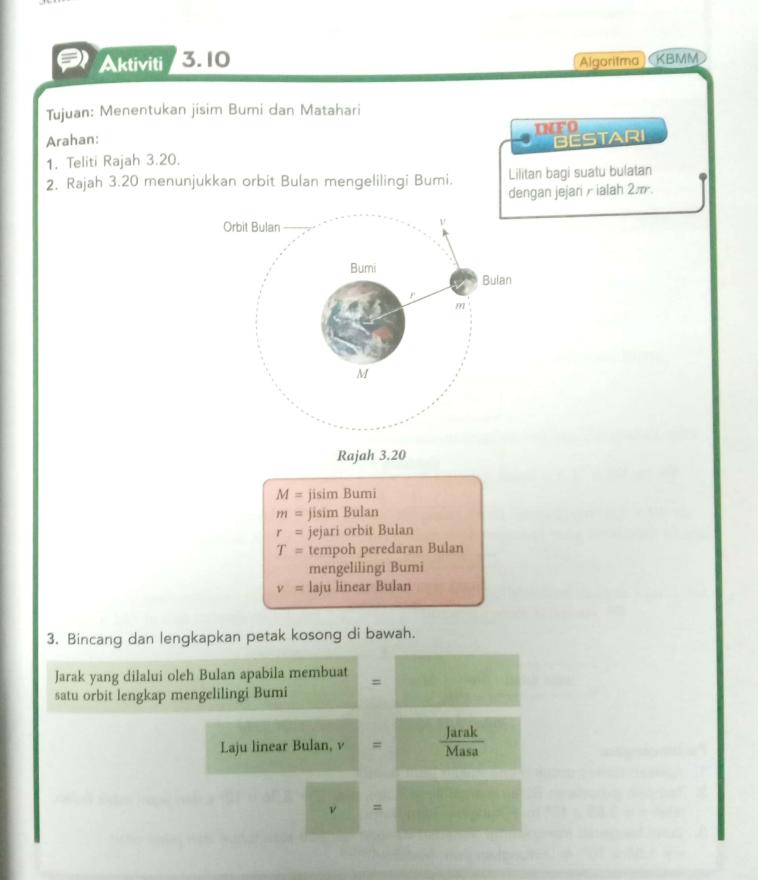
Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah

Kenal pasti dan tulis rumus yang digunakan.

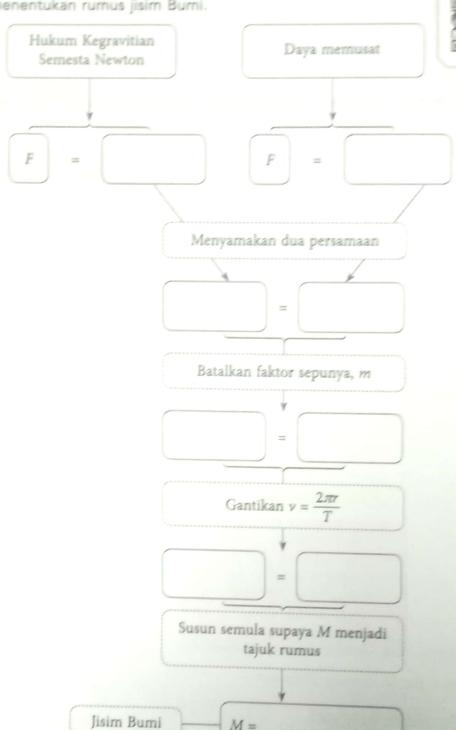
Langkah 🔞


Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

Ketinggian satelit,
$$h = 480 \text{ km}$$

= $480 000 \text{ m}$
Laju linear satelit, $v = 7.62 \times 10^3 \text{ m s}^{-1}$
Jejari Bumi, $R = 6.37 \times 10^6 \text{ m}$

$$\begin{cases} a = \frac{v^2}{r} \\ a = \frac{v^2}{(R+h)} \\ = \frac{(7.62 \times 10^3)^2}{(6.37 \times 10^6 + 480\ 000)} \\ = 8.48 \text{ m s}^{-2} \end{cases}$$


Jisim Bumi dan Matahari

Rumus jisim Bumi dan Matahari boleh diterbitkan menggunakan rumus Hukum Kegravitian Semesta Newton dan rumus daya memusat.

 Muat turun dan cetak Rajah 3.21 dalam laman sesawang yang diberikan di sebelah dan lengkapkannya untuk menentukan rumus jisim Bumi.

Muat turun Rajah 1.21 国政策国 http://bii by/2RoHI/5X

Rajah 3.21 Menentukan rumus jisim Bumi

Perbincangan:

- 1. Apakah rumus untuk menentukan jisim Bumi?
- 2. Tempoh peredaran Bulan mengelilingi Bumi, ialah $T=2.36\times 10^6$ s dan jejari orbit Bulan ialah $r=3.83\times 10^8$ m. Hitungkan jisim Bumi.
- 3. Bumi bergerak mengelilingi Matahari dengan tempoh satu tahun dan jejari orbit $r=1.50\times 10^{11}$ m. Hitungkan jisim Matahari.

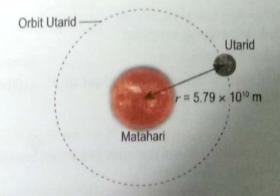
Rumus yang digunakan untuk menentukan iisim Bumi atau Matahari

$$M = \frac{4\pi^3 r^3}{GT^2}$$

Data yang diperlukan untuk menghitung jisim Bumi

- · jejari orbit mana-mana satelit atau Bulan
- tempoh peredaran

Data yang diperlukan untuk menghitung iisim Matahari


- · jejari orbit mana-mana planet
- tempoh peredaran planet tersebut

Rajah 3.22 Rumus dan data yang digunakan untuk menghitung jisim Bumi dan Matahari

Latihan Formatif

3.1

- Nyatakan Hukum Kegravitian Semesta Newton.
- 2. Nyatakan dua faktor yang mempengaruhi magnitud daya graviti antara dua jasad.
- 3. Sebuah puing angkasa berjisim 24 kg berada pada jarak 7.00×10^6 m dari pusat Bumi. Berapakah daya graviti antara puing angkasa itu dengan Bumi? $[G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}, \text{ jisim Bumi} = 5.97 \times 10^{24} \text{ kg}]$
- 4. Sebuah satelit kaji cuaca sedang mengorbit Bumi pada ketinggian 560 km. Berapakah nilai pecutan graviti di kedudukan satelit itu? $[G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}, \text{ jisim Bumi} = 5.97 \times 10^{24} \text{ kg, jejari Bumi} = 6.37 \times 10^6 \text{ m}]$
- 5. Sebuah satelit buatan manusia berjisim 400 kg mengorbit Bumi dengan jejari 8.2×10^6 m. Laju linear satelit itu ialah 6.96×10^3 m s⁻¹. Berapakah daya memusat yang bertindak ke atas satelit itu?
- 6. Rajah 3.23 menunjukkan planet Utarid mengorbit mengelilingi Matahari dengan jejari orbit 5.79 × 10¹⁰ m dan tempoh peredaran 7.57 × 10⁶ s. Hitungkan jisim Matahari.

Rajah 3.23

Hukum Kepler

Semasa di Tingkatan 3, anda telah mengetahui mengenai Kepler, seorang ahli astronomi, matematik dan astrologi Jerman yang mengubah suai model heliosentrik mengikut Hukum Kepler. Tahukah anda terdapat tiga Hukum Kepler? Mari kita mengetahui ketiga-tiga hukum tersebut.

Hukum Kepler Pertama

Orbit bagi setiap planet adalah elips dengan Matahari berada di satu daripada fokusnya.

Jalankan Aktiviti 3.11 untuk mendapatkan gambaran yang jelas mengenai Hukum Kepler Pertama.

Johannes Kepler bekerja sebagai pembantu kepada ahli astronomi Tycho Brahe. Sifat keazaman yang tinggi mendorong beliau untuk mengkaji data astronomi Brahe selama lebih daripada sepuluh tahun. Akhirnya Kepler berjaya merumuskan tiga hukum yang menghuraikan gerakan planet mengelilingi Matahari.

Tujuan: Melakar bentuk elips berdasarkan konsep dwifokus elips

Bahan: Pensel, benang 20 cm, dua paku payung, kertas A4, papan lembut dan pita selofan

Arahan:

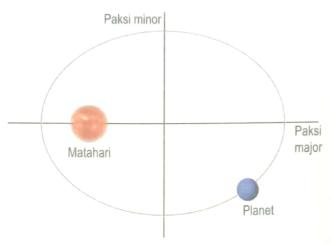
- 1. Cetak templat yang diberikan dalam laman sesawang di sebelah pada sehelai kertas A4 dan lekatkannya di atas sekeping papan lembut.
- Pacak paku payung pada titik F₁ dan F₂.
- 3. Ikat dua hujung benang itu masing-masing kepada dua paku payung itu.
- 4. Tegangkan benang dengan mata pensel seperti yang ditunjukkan dalam Rajah 3.24.
- 5. Gerakkan pensel dari paksi major di sebelah kiri F, ke paksi major di sebelah kanan F, untuk melakar separuh elips.
- 6. Ulangi langkah 5 pada bahagian sebelah bawah untuk memperoleh bentuk elips yang lengkap.
- Keluarkan paku payung dan benang.
- 8. Lukiskan satu bulatan kecil untuk mewakili Matahari di F_1 . Lukiskan bulatan kecil untuk mewakili Bumi di atas lilitan elips.

Paksi minor Pensel Benang Paku payung Paksi major payung

Templat Aktiviti 3.11

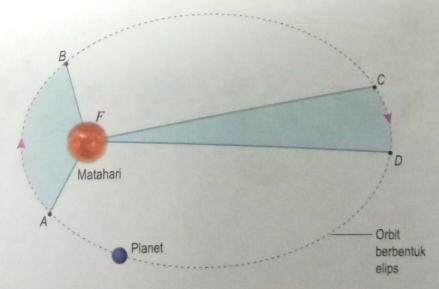
http://bit.

ly/2R1Quei


Rajah 3.24

Perbincangan:

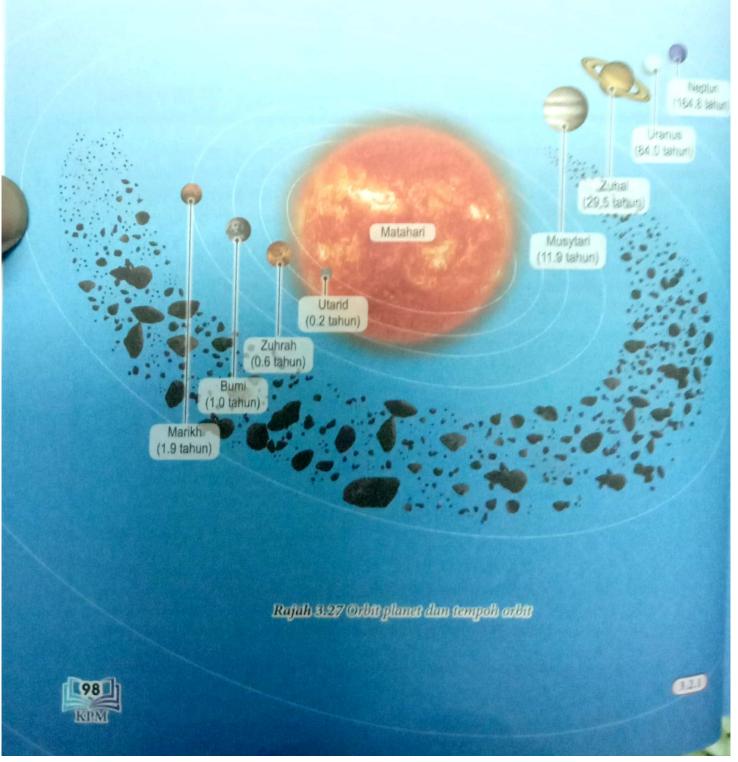
- 1. Huraikan bagaimana jarak di antara Bumi dengan Matahari berubah apabila Bumi membuat satu orbit lengkap mengelilingi Matahari.
- 2. Bincangkan bagaimana bentuk orbit Bumi jika paksi major hampir sama panjang dengan paksi minor.


Planet-planet dalam Sistem Suria mempunyai orbit berbentuk elips. Rajah 3.25 menunjukkan Matahari sentiasa berada di satu fokus bagi elips itu. Paksi major adalah lebih panjang daripada paksi minor. Kebanyakan orbit planet dalam Sistem Suria mempunyai paksi major hampir sama panjang dengan paksi minor. Oleh itu, bentuk elips orbit planet-planet dalam Sistem Suria adalah hampir bulat. Planet-planet boleh dianggap membuat gerakan membulat mengelilingi Matahari. Jejari orbit ialah nilai purata bagi jarak di antara planet dengan Matahari.

Rajah 3.25 Orbit planet mengelilingi Matahari

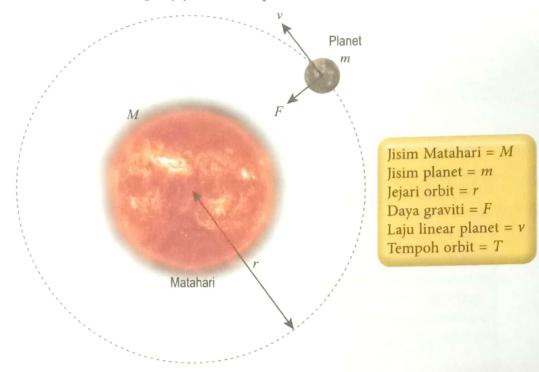
Hukum Kepler Kedua Garis yang menyambungkan planet dengan Matahari akan mencakupi luas yang sama dalam selang masa yang sama apabila planet bergerak dalam orbitnya.

Perhatikan Rajah 3.26. Jika sebuah planet mengambil masa yang sama untuk bergerak dari A ke B dan C ke D, luas kawasan AFB adalah sama dengan luas kawasan CFD. Jarak AB adalah lebih besar daripada jarak CD. Hal ini bermakna planet itu bergerak dengan laju linear yang lebih tinggi dari A ke B berbanding dengan dari C ke D.



Rajah 3.26 Pergerakan planet dalam orbit

Hukum Kepler Ketiga Kuasa dua tempoh orbit planet adalah berkadar terus dengan kuasa tiga jejari orbitnya, Secara matematik, $T^{\gamma} \propto r^{\gamma}$ T = tempoh orbit planer = jejari orbit


Planet yang mengorbit dengan jejari yang lebih besar akan mempunyai tempoh orbit yang lebih panjang. Oleh yang demikian, planet yang lebih jauh daripada Matahari mengambil masa yang lebih lama untuk melengkapkan satu orbit mengelilingi Matahari.

Sebagai contoh, Bumi mengambil masa 1 tahun untuk satu orbit lengkap manakala planet Zuhal mengambil masa 29.5 tahun. Rajah 3.27 menunjukkan orbit dan tempoh orbit planet.

Hukum Kepler Ketiga boleh dirumus menggunakan Hukum Kegravitian Semesta Newton dan konsep gerakan membulat. Planet melakukan gerakan membulat mengelilingi Matahari. Daya memusat yang bertindak ialah daya graviti antara Matahari dengan planet itu. Perhatikan Rajah 3.28 yang menunjukkan orbit sebuah planet mengelilingi Matahari.

Dengan menganggap orbit planet yang mengelilingi Matahari adalah bulatan, kita boleh terbitkan hubungan antara tempoh orbit planet dengan jejari orbit seperti dalam Hukum Kepler Ketiga.

Rajah 3.28 Orbit sebuah planet

Daya graviti yang bertindak ke atas planet, $F = \frac{GMm}{r^2}$

Daya graviti itu bertindak sebagai daya memusat untuk planet membuat gerakan membulat mengelilingi Matahari.

Daya memusat,
$$F = \frac{mv^2}{r}$$

Maka,

Daya memusat = Daya graviti
$$\frac{mv^2}{r} = \frac{GMm}{r^2}$$

$$v^2 = \frac{GM}{r^2}$$
.....[1]

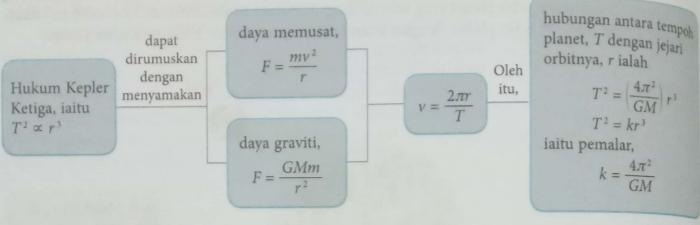
 $v^2 = \frac{GM}{r}$[1]
Laju linear planet, $v = \frac{\text{Jarak dilalui dalam satu orbit lengkap}}{\text{Tempoh orbit}}$ Tempoh orbit

$$=\frac{2\pi r}{T}.....[2]$$

Gantikan, [2] ke [1]

$$\left(\frac{2\pi r}{T}\right)^2 = \frac{GM}{r}$$
$$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$$

Oleh sebab, GM adalah malar, $T^2 \propto r^3$


 $T^2 \propto r^3$ ialah Hukum Kepler Ketiga.

Perimeter orbit = $2\pi r$

Rajah 3.29 merumuskan Hukum Kepler Ketiga. Apabila Hukum Kepler Ketiga diaplikasikan terhadap sistem planet dengan Matahari, M adalah merujuk kepada jisim Matahari. Hukum Kepler Ketiga boleh juga diaplikasi kepada sistem satelit dan Bumi, dengan M merujuk kepada jisim Bumi.

Rajah 3.29 Merumuskan Hukum Kepler Ketiga

Menyelesaikan Masalah Menggunakan Rumus Hukum Kepler Ketiga

Daripada Hukum Kepler Ketiga, hubungan antara tempoh orbit, T dengan jejari orbit, r ialah

$$T^2 = \left(\frac{4\pi^2}{GM}\right) r^3$$

Katakan dua planet dibandingkan.

Bagi planet 1,
$$T_1^2 = \left(\frac{4\pi^2}{GM}\right) r_1^3$$
(1)

Bagi planet 2,
$$T_2^2 = \left(\frac{4\pi^2}{GM}\right) r_2^3$$
(2)

(1) ÷ (2) memberikan
$$\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$$

Persamaan $\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$ boleh digunakan untuk menghitung tempoh orbit, T atau jejari orbit, r.

(b) Jejari orbit Bumi ialah 1.50 × 10¹¹ m, tempoh orbit Bumi dan Marikh ialah masing-masing 1.00 tahun dan 1.88 tahun. Hitungkan jejari orbit Marikh.

Penyelesaian:

(a) Jejari orbit Bumi, tempoh orbit Bumi dan tempoh orbit Marikh.

(b)

Langkah ①

Senaraikan maklumat yang diberi dengan simbol. Jejari orbit Bumi, $r_1 = 1.50 \times 10^{11}$ m Jejari orbit Marikh = r_2 Tempoh orbit Bumi, $T_1 = 1.00$ tahun Tempoh orbit Marikh, $T_2 = 1.88$ tahun

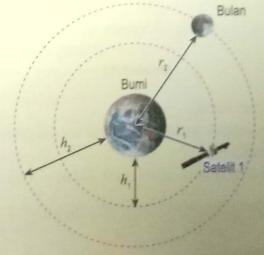
Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

$$\begin{cases} \frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3} \end{cases}$$

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$\begin{cases} \frac{1.00^2}{1.88^2} = \frac{(1.50 \times 10^{11})^3}{r_2^3} \\ r_2^3 = \frac{(1.50 \times 10^{11})^3 \times 1.88^2}{1.00^2} \\ r_2 = \sqrt[3]{\frac{(1.50 \times 10^{11})^3 \times 1.88^2}{1.00^2}} \\ = 2.28 \times 10^{11} \text{ m} \end{cases}$$



Nati 3 Kenyastila

Persamaan $\frac{1}{T_2^2} = \frac{1}{r_2^3}$ melibatkan tempoh orbit sebuah planet bahagi tempoh orbit sebuah planet yang lain. Unit yang sama perlu digunakan untuk kedua-dua tempoh.

Contoh 2

Rajah 3.31 menunjukkan sebuah satelit penyelidikan perlu mengorbit pada ketinggian 380 km untuk membuat pengimejan jelas muka Bumi. Berapakah tempoh orbit satelit itu?

Bumi di pusat

Rajah 3.31

[Jejari orbit Bulan = 3.83 × 108 m, tempoh orbit Bulan = 655.2 jam]

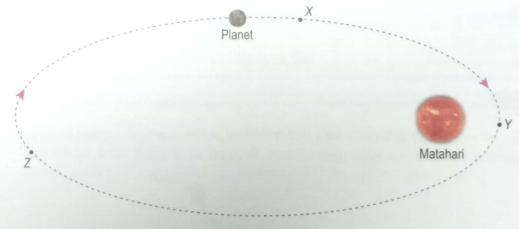
Penyelesaian:

Jejari orbit satelit,
$$r_1 = (6.37 \times 10^6) + (380 \times 10^3)$$

 $= 6.75 \times 10^6$ m
Jejari orbit Bulan, $r_2 = 3.83 \times 10^8$ m
Tempoh orbit satelit = T_1
Tempoh orbit Bulan, $T_2 = 655.2$ jam
 $\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$

$$\frac{T_1^2}{655.2^2} = \frac{(6.75 \times 10^6)^3}{(3.83 \times 10^8)^3}$$

$$T_1^2 = \frac{(6.75 \times 10^6)^3 \times 655.2^2}{(3.83 \times 10^8)^3}$$


$$T_1 = \sqrt{\frac{(6.75 \times 10^6)^3 \times 655.2^2}{(3.83 \times 10^8)^3}}$$

$$= 1.53 \text{ jam}$$

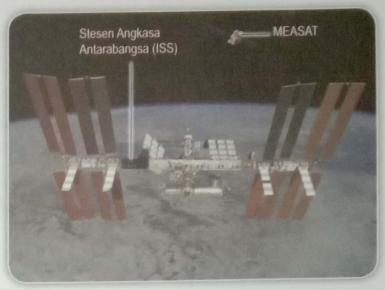
Latihan Formatif

3.2

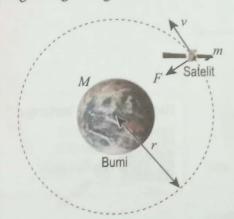
- 1. Nyatakan Hukum Kepler Pertama.
- 2. (a) Nyatakan Hukum Kepler Kedua.
 - (b) Rajah 3.32 menunjukkan orbit sebuah planet mengelilingi Matahari. Bandingkan laju linear planet itu di kedudukan X, Y dan Z.

Rajah 3.32

- 3. (a) Nyatakan Hukum Kepler Ketiga.
 - (b) Berapakah ketinggian sebuah satelit jika satelit itu dikehendaki mengorbit Bumi dengan tempoh 24 jam?


[Tempoh orbit Bulan = 27.3 hari, jejari orbit Bulan = 3.83×10^8 m]

Satelit Buatan Manusia


Orbit Satelit

Rajah 3.33 menunjukkan Stesen Angkasa Antarabangsa, ISS (International Space Station) dan satelit MEASAT. ISS boleh dilihat dari Bumi kerana bersaiz besar dan mengorbit pada ketinggian 408 km. Satelit MEASAT sukar untuk dilihat kerana bersaiz kecil dan mengorbit pada ketinggian 35 786 km. Satelit akan bergerak dalam orbit pada ketinggian tertentu dengan laju linear satelit yang sesuai.

Rumus daya memusat dan Hukum Kegravitian Semesta Newton digunakan untuk menerbitkan dan menentukan laju linear satelit. Rajah 3.34 menunjukkan orbit sebuah satelit yang mengelilingi Bumi.

Rajah 3.33 Satelit buatan manusia mengorbit Bumi

Jisim Bumi = MJisim satelit = mJejari orbit satelit = rLaju linear satelit = v Tempoh orbit = T

Kedudukan dan laluan ISS

spotthestation. nasa.gov/

Rajah 3.34 Orbit sebuah satelit

Satelit yang bergerak dalam orbit membulat mengelilingi Bumi akan mengalami daya memusat, iaitu daya graviti.

> Daya graviti antara satelit dengan Bumi, $F = \frac{GMm}{r^2}$ Daya memusat pada satelit, $F = \frac{mv^2}{r}$ Daya memusat = Daya graviti

melibatkan bidang Fizik tentang mekanik orbit, persekitaran angkasa lepas, penentuan dan kawalan ketinggian, telekomunikasi, struktur aeroangkasa, dan perenjangan roket.

Oleh sebab GM adalah malar, laju linear satelit hanya bergantung kepada jejari orbitnya Jika sebuah satelit berada pada ketinggian, h di atas permukaan Bumi,

Jejari orbit,
$$r = R + h$$
 iaitu $R =$ jejari Bumi.
Dengan itu, laju linear satelit, $v = \sqrt{\frac{GM}{R + h}}$

Satelit buatan manusia boleh dilancar untuk kekal mengorbit pada ketinggian yang tertem mengelilingi Bumi dengan jejari orbit, r jika satelit itu diberikan laju linear satelit $v = \sqrt{\frac{GM}{r}}$. Rajah 3.35 menunjukkan sebuah satelit Sistem Kedudukan Sejagat (GPS).

Rajah 3.35 Satelit GPS mengorbit Bumi

Ketinggian,
$$h = 20\ 200 \times 1000\ \text{m}$$

 $= 2.02 \times 10^7\ \text{m}$
Jejari orbit, $r = (6.37 \times 10^6) + (2.02 \times 10^7)$
 $= 2.657 \times 10^7\ \text{m}$
Laju linear satelit, $v = \sqrt{\frac{GM}{r}}$
 $= \sqrt{\frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}{2.657 \times 10^7}}$
 $= 3.87 \times 10^3\ \text{m s}^{-1}$

Dalam orbit yang stabil, laju linear satelit ialah $\nu = \sqrt{\frac{GM}{r}}$. Laju linear ini adalah cukup besar untuk satelit itu bergerak dalam orbit membulat mengelilingi Bumi. Pecutan memusat satelit itu adalah sama dengan pecutan graviti.

Jika laju linear satelit menjadi kurang daripada laju linear satelit yang sepatutnya, satelit itu akan jatuh ke orbit yang lebih rendah, dan terus memusar mendekati Bum sehingga memasuki atmosfera. Gerakan satelit dengan laju linear tinggi bertentangan dengan rintangan udara akan menjana haba dan boleh menyebabkan satelit itu terbakar.

Satelit Geopegun dan Bukan Geopegun

Rajah 3.36 menunjukkan dua jenis satelit yang mengorbit Bumi, iaitu satelit geopegun dan satelit bukan geopegun. Teliti ciri-ciri satelit tersebut.

Satelit geopegun

- Berada dalam suatu orbit khas yang dinamakan Orbit Bumi Geopegun
- Bergerak mengelilingi Bumi dalam arah yang sama dengan arah putaran Bumi pada paksinya
- Tempoh orbit T = 24 jam, iaitu sama dengan tempoh putaran Bumi.
- Sentiasa berada di atas kedudukan geografi yang sama di permukaan Bumi

Satelit geopegun

https://www.nasa. gov/content/goes

Satelit bukan geopegun

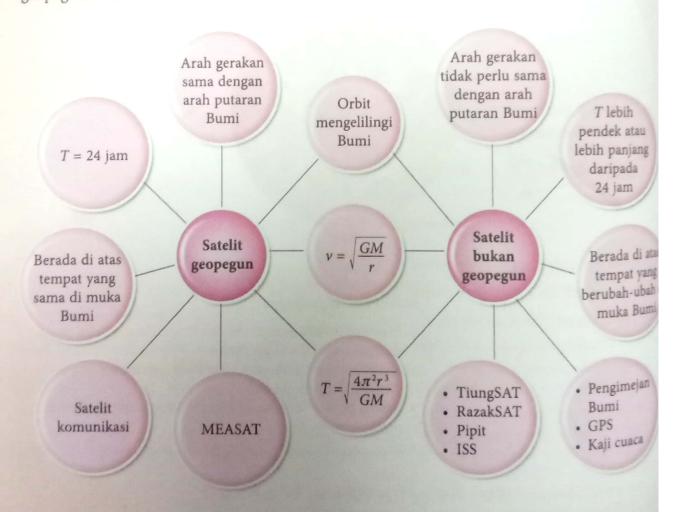
https://go.nasa. gov/2W2xcIZ

Satelit bukan geopegun

- Biasanya berada dalam orbit lebih rendah atau lebih tinggi daripada orbit Bumi geopegun
- Mempunyai tempoh orbit yang lebih pendek atau lebih panjang daripada 24 jam
- Berada di atas kedudukan geografi yang berubah-ubah di permukaan Bumi

Rajah 3.36 Satelit geopegun dan bukan geopegun

Tujuan: Mencari maklumat tentang satelit geopegun dan satelit bukan geopegun dari seg fungsi dan tempoh hayat


Arahan:

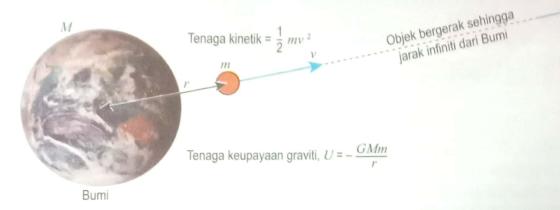
- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Layari laman sesawang untuk mencari maklumat mengenai fungsi dan tempoh hayat bag satu contoh satelit geopegun dan satu contoh satelit bukan geopegun.
- 3. Bentangkan hasil pencarian anda dalam bentuk folio dan pamerkannya di Pusat Sumber sekolah anda.

Perbincangan:

- 1. Apakah kelebihan satelit bukan geopegun?
- 2. Mengapakah satelit komunikasi perlu berada dalam orbit geopegun?

Rajah 3.37 menunjukkan perbandingan antara satelit geopegun dengan satelit bukan geopegun serta contoh-contoh satelit.

Rajah 3.37 Perbandingan satelit geopegun dan bukan geopegun


Halaju Lepas

Halaju lepas, v ialah halaju minimum yang diperlukan oleh objek di permukaan Bumi untuk mengatasi daya graviti dan terlepas ke angkasa lepas. Rumus halaju lepas boleh diterbitkan dengan cara yang ditunjukkan di bawah.

Katakan suatu objek berada pada jarak r dari pusat Bumi. Jisim objek ialah m dan jisim Bumi ialah M. Objek itu mempunyai tenaga keupayaan graviti, $U = -\frac{GMm}{r}$

Rajah 3.38 menunjukkan sebuah objek dilancar dengan halaju lepas, v. Objek itu boleh mengatasi daya graviti dan bergerak sehingga jarak infiniti dari Bumi.

Rajah 3.38 Objek dilancar dengan halaju lepas

Halaju lepas dicapai apabila tenaga kinetik minimum yang dibekalkan kepada objek itu dapat mengatasi tenaga keupayaan gravitinya. Oleh itu,

Tenaga kinetik minimum + Tenaga keupayaan = 0

Iaitu,
$$\frac{1}{2}mv^2 + \left(-\frac{GMm}{r}\right) = 0$$

$$v^2 = \frac{2GM}{r}$$
Halaju lepas, $v = \sqrt{\frac{2GM}{r}}$

Jisim Bumi,
$$M = 5.97 \times 10^{24}$$
 kg
Jejari Bumi, $R = 6.37 \times 10^{6}$ m
Halaju lepas dari Bumi, $\nu = \sqrt{\frac{2GM}{R}}$

$$= \sqrt{\frac{2 \times (6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}{(6.37 \times 10^{6})}}$$

$$= 1.12 \times 10^{4} \text{ m s}^{-1}$$

$$= 11.2 \times 10^{3} \text{ m s}^{-1}$$

$$= 11.2 \text{ km s}^{-1}$$

Fail INFO

Bagi objek di permukaan Bumi, jaraknya dari pusat sama dengan jejari Bumi, R.

Halaju lepas bagi objek itu ialah

$$v = \sqrt{\frac{2GM}{R}}$$

Fail INFO

Oleh sebab Bumi mempunyai jisim yang besar, halaju lepas dari Bumi mempunyai nilai yang tinggi, 11 200 m s⁻¹ atau 40 300 km j⁻¹.

Halaju lepas, ν bagi suatu objek bergantung kepada jisim Bumi, M dan jarak, r objek dari pusat Bumi. Halaju lepas tidak bergantung kepada jisim objek, m yang dilepaskan ke angkasa lepas.

Manfaat dan Implikasi Halaju Lepas

Halaju lepas dari Bumi yang tinggi, iaitu 11 200 m s⁻¹ membawa manfaat dan implikasi kepada manusia. Antara manfaatnya ialah Bumi berupaya mengekalkan lapisan atmosfera di sekelilingnya. Molekul-molekul dalam atmosfera bergerak dengan laju linear purata 500 m s⁻¹, iaitu jauh lebih kecil daripada halaju lepas dari Bumi. Oleh yang demikian, molekul-molekul udara yang bergerak secara rawak tidak mungkin terlepas dari Bumi dan meresap ke angkasa lepas.

Halaju lepas dari Bumi yang tinggi juga membolehkan kapal terbang komersial atau jet pejuang terbang sehingga aras yang tinggi dalam atmosfera tanpa kemungkinan terlepas ke angkasa lepas. Laju linear kedua-duanya masih lebih rendah daripada halaju lepas dari Bumi. Kapal terbang komersial boleh terbang dengan laju linear 250 m s⁻¹ manakala jet pejuang boleh mencapai laju linear supersonik sehingga 2 200 m s⁻¹.

Gambar foto 3.1 Kapal terbang komersial

Pelancaran roket memerlukan kuantiti bahan api yang besar. Pembakaran bahan api perlu menghasilkan kuasa rejang yang tinggi bagi membolehkan roket mencapai halaju lepas dari Bumi dan menghantar kapal angkasa ke angkasa lepas.

Gambar foto 3.2 Pelancaran roket

Menyelesaikan Masalah yang Melibatkan Halaju Lepas

Anda telah menghitung halaju lepas dari Bumi dengan rumus $v = \sqrt{\frac{2GM}{R}}$. Sebenarnya, rumus ini boleh juga digunakan untuk menghitung halaju lepas dari jasad lain seperti Bulan, Marikh dan Matahari.

Aktiviti 3.13

Pemikiran Logik KBMM

Tujuan: Membincangkan halaju lepas dari planet-planet

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Salin semula dan lengkapkan Jadual 3.4 dengan menghitung nilai halaju lepas.

Jadual 3.4

Planet	Jisim, M / kg	Jejari, R / m	Halaju lepas, v / m s-1
Zuhrah	4.87×10^{24}	6.05×10^{6}	
Marikh	6.42×10^{23}	3.40×10^{6}	
Musytari	1.90×10^{27}	6.99×10^{7}	

Halaju lepas adalah berbeza antara setiap planet. Halaju lepas dari Marikh yang kecil menyebabkan atmosfera Marikh 100 kali kurang tumpat daripada Bumi. Musytari pula mempunyai halaju lepas yang begitu tinggi sehingga gas panas di permukaan tidak dapat terlepas ke angkasa lepas. Pengetahuan tentang halaju lepas adalah penting untuk menentukan bagaimana kapal angkasa dapat mendarat dan berlepas semula dengan selamat dari sebuah planet.

Imbas kembali Ciri-ciri planet dalam Sistem Suria

Contoh 1

Bulan dan Matahari ialah dua jasad dalam Sistem Suria. Jadual 3.5 menunjukkan nilai jisim dan jejari bagi Bulan dan Matahari. Bandingkan

- (i) pecutan graviti di Bulan dan di Matahari, dan
- (ii) halaju lepas dari Bulan dan dari Matahari berdasarkan data yang diberikan dalam Jadual 3.5.

Jadual 3.5

Jasad	Jisim, M / kg	Jejari, R / m
Bulan	7.35×10^{22}	1.74×10^{6}
Matahari	1.99×10^{30}	6.96 × 10 ⁸

Penyelesaianc

(ii) Pecutan graviti dihitung dengan rumus $g = \frac{GM}{R^2}$

Bulan

$$g = \frac{(6.67 \times 10^{-11}) \times (7.35 \times 10^{22})}{(1.74 \times 10^{9})^{2}}$$

= 1.62 m s⁻²

Matahari

$$g = \frac{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})}{(6.96 \times 10^{6})^{2}}$$
$$= 274.0 \text{ m s}^{-2}$$

(iii) Halaju lepas dihitung dengan rumus $v = \sqrt{\frac{2GM}{R}}$

Bulan

$$v = \frac{2 \times (6.67 \times 10^{-11}) \times (7.35 \times 10^{12})}{1.74 \times 10^{6}}$$
$$= 2.37 \times 10^{3} \text{ m s}^{-1}$$

Matahari

$$w = \sqrt{\frac{2 \times (6.67 \times 10^{-11}) \times (1.99 \times 10^{30})}{(6.96 \times 10^{8})}}$$

= 6.18 × 10⁵ m s⁻¹

- Bulan mempunyai pecutan graviti dan halaju lepas yang kecil kerana jisim Bulan adalah lebih kecil daripada Matahari.
- Matahari merupakan jasad yang terbesar dalam Sistem Suria. Pecutan graviti di Matahari dan halaju lepas dari Matahari mempunyai nilai yang tertinggi berbanding dengan Bulan serta planet-planet lain.

Latihan Formatif 3.3

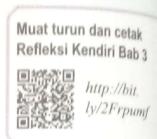
- 1. Banding dan bezakan satelit geopegun dan satelit bukan geopegun.
- 2. Apakah faktor yang menentukan laju linear satelit-satelit yang mengorbit Bumi?
- 3. Nyatakan dua faktor yang mempengaruhi nilai halaju lepas dari sebuah planet.
- Bincangkan sama ada sebuah kapal angkasa X berjisim 1 500 kg dan kapal angkasa Y berjisim 2 000 kg memerlukan halaju lepas yang berbeza untuk terlepas daripada graviti Bumi.
- 5. Satelit pemerhati Bumi, Proba-1 mengorbit Bumi pada ketinggian 700 km. Berapakah laju linear satelit itu?

 $[G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}, \text{ jisim Bumi} = 5.97 \times 10^{24} \text{ kg, jejari Bumi} = 6.37 \times 10^6 \text{ m}]$

Scanned by CamScanner

REFLEKSI KENDIRI

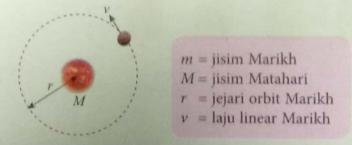
1. Perkara baharu yang saya pelajari dalam bab kegravitian ialah


2. Perkara paling menarik yang saya pelajari dalam bab kegravitian ialah

3. Perkara yang saya masih kurang fahami atau kuasai ialah

Prestasi saya dalam bab ini.

Kurang 1 2 3 4 5 Sangat baik

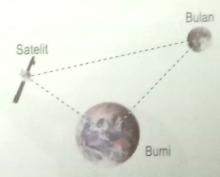

5. Saya perlu untuk meningkatkan prestasi saya dalam bab ini.

Penilaian Prestasi

1. Rajah 1 menunjukkan planet Marikh yang mengorbit Matahari secara membulat dengan tempoh peredaran, T.

Rajah 1

- (a) Bagi planet Marikh, tuliskan rumus bagi:
 - (i) daya graviti dalam sebutan m, M dan r,
 - (ii) daya memusat dalam sebutan m, v dan r, serta
 - (iii) laju linear dalam sebutan r dan T.
- (b) Terbitkan satu ungkapan bagi jisim Matahari dalam sebutan r dan T dengan menggunakan tiga rumus dalam (a).
- (c) Jejari orbit Marikh ialah $r = 2.28 \times 10^{11}$ m dan tempoh peredarannya ialah T = 687 hari. Hitungkan jisim Matahari.


- 2. Sebuah satelit mengorbit Bumi dengan jejari, r dan tempoh, T.
 - (a) Tuliskan laju linear satelit itu dalam sebutan r dan T.
 - (b) Gunakan rumus-rumus lain yang sesuai untuk menerbitkan rumus bagi laju linear satelit itu dalam sebutan r dan M. M ialah jisim Bumi.
 - (c) Mengapakah laju linear satelit yang mengorbit Bumi tidak bergantung pada jisim satelit itu?
- 3. Rajah 2 menunjukkan orbit planet Uranus.

Rajah 2

Huraikan perubahan laju linear planet Uranus apabila Uranus bergerak dari titik A ke titik B.

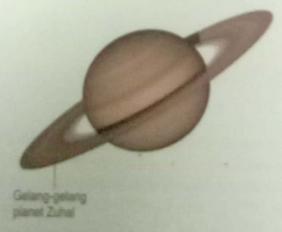
4. Rajah 3 menunjukkan Bumi, Bulan dan sebuah satelit.

Rajah 3

- (a) Pasangan jasad yang manakah mengalami daya graviti yang paling kecil? Beri sebab untuk jawapan anda.
- (b) Hitungkan daya graviti antara Bumi dengan satelit itu.

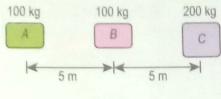
 [Jisim Bumi = 5.97 × 10²⁴ kg, jisim satelit = 1.2 × 10³ kg, jarak di antara pusat Bumi dengan pusat satelit = 7.87 × 10⁶ m]
- 5. (a) Apakah faktor-faktor yang menentukan nilai pecutan graviti di suatu kedudukan?
 - (b) Sebuah satelit berada pada jarak 4.20 × 10⁷ m dari pusat Bumi. Berapakah nilai pecutan graviti di kedudukan ini?

 [Jisim Bumi = 5.97 × 10²⁴ kg]



Rajah 4

- (a) Tuliskan hubungan antara tempoh orbit dengan jejari orbit bagi Bumi dan Neptun
- (b) Tempoh orbit Bumi ialah 365 hari dan jejari orbit Bumi ialah 1.50 x 10¹¹ m. Hitungkan jejari orbit Neptun jika tempoh orbitnya ialah 5.98 x 10⁴ hari. [∞]
- 7. Bumi mengorbit Matahari dengan jejari orbit 1.50 × 10¹¹ m dan tempoh peredaran I tahun. Planet Zuhal membuat orbit dengan jejari orbit 1.43 × 10¹² m. Berapakah tempoh orbit Zuhal?
- 8. Sebuah kapal angkasa mengorbit Bumi pada ketinggian 1 600 km. Hitungkan halaju lepas untuk kapal angkasa ini.
 [G = 6.67 × 10¹¹ N m² kg², jisim Bumi = 5.97 × 10²⁴ kg, jejari Bumi = 6.37 × 10⁸ m]
- 9. Rajah 5 menunjukkan planet Zuhal mempunyai gelang-gelang di sekelilingnya yang terdiri daripada zarah-zarah kecil. Planet Zuhal mempunyai jisim 5.68×10^{26} kg dan jejari 6.03×10^7 m.



Rajah 5

- (a) Hitungkan halaju lepas dari planet Zuhal. 🤏
- (b) Bincangkan kemungkinan zarah-zarah kecil dalam gelang-gelang planet Zuhal terlepas ke angkasa.

10. Rajah 6 menunjukkan tiga jasad A, B dan C. Diberi daya graviti antara A dengan B ialah P.

Rajah 6

Nyatakan dalam sebutan P, daya graviti antara

- (i) B dengan C, dan 🧠
- (ii) A dengan C.
- 11. Jadual 1 menunjukkan maklumat mengenai tiga jenis orbit X, Y dan Z bagi satelit yang mengorbit Bumi.

Jadual 1

Orbit	Bentuk orbit	Ketinggian orbit / m	Tempoh orbit / jam
X	Elips	6.70×10^{3}	1.41
Y	Bulat	3.59×10^{7}	24.04
Z	Bulat	5.43×10^7	41.33

Sebuah agensi angkasa ingin melancarkan dua buah satelit P dan Q ke dalam orbit mengelilingi Bumi. Satelit P ialah satelit pengimejan Bumi yang boleh mengambil gambar pelbagai kedudukan di permukaan Bumi manakala satelit Q ialah satelit komunikasi televisyen.

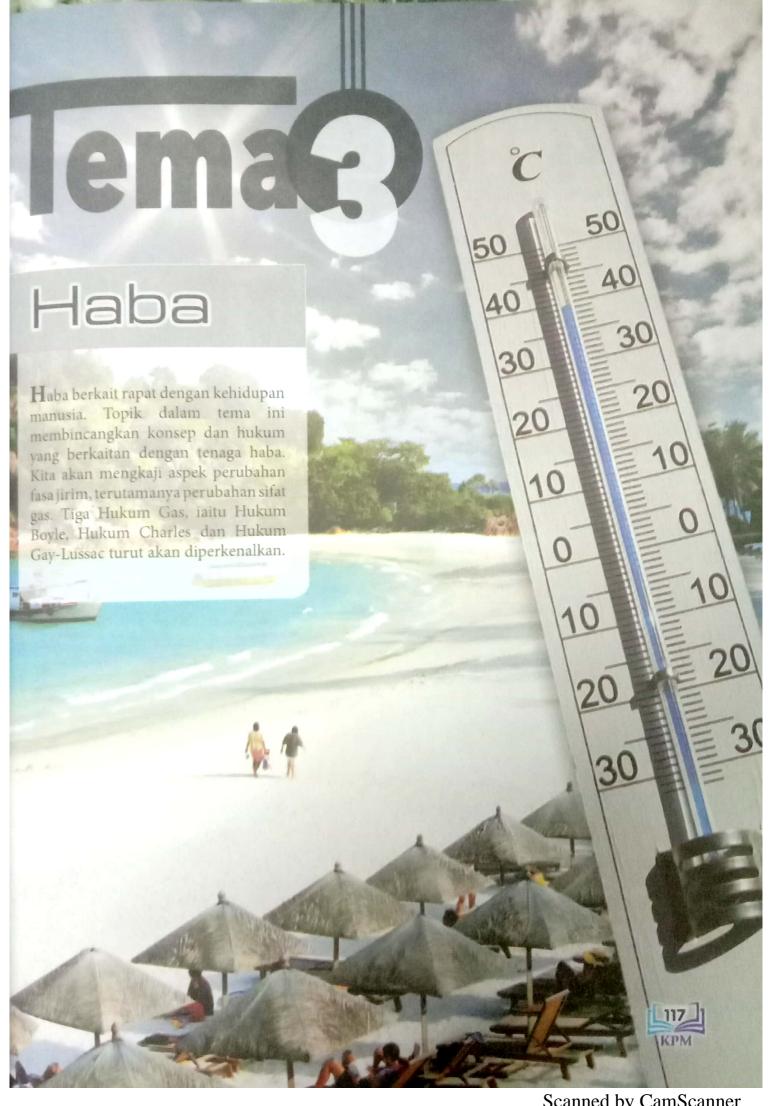
Dengan menggunakan maklumat dalam Jadual 1, tentukan orbit yang manakah sesuai untuk satelit *P* dan satelit *Q*. Beri penjelasan untuk pilihan anda.

12. Andaikan diri anda sebagai seorang saintis. Kumpulan anda telah menemui satu sistem jasad yang baharu. Sistem ini terdiri daripada sebuah bintang di pusat dan lima buah planet dalam orbit membulat mengelilingi bintang tersebut. Jadual 2 menunjukkan maklumat sistem jasad itu.

Jadual 2

Jasad	Jisim / kg	Jejari jasad / m	Jejari orbit / m
Bintang	5.90×10^{29}	6.96×10^{8}	-
Planet A	2.80×10^{22}	1.07×10^{6}	2.86×10^{10}
Planet B	6.30×10^{23}	2.30×10^{6}	9.85×10^{10}
Planet C	7.40×10^{22}	3.41×10^{6}	1.15 × 10 ¹¹
Planet D	4.60×10^{25}	1.32×10^7	5.32 × 10 ¹¹
Planet E	1.90×10^{21}	2.42 × 10 ⁵	2.13×10^{12}

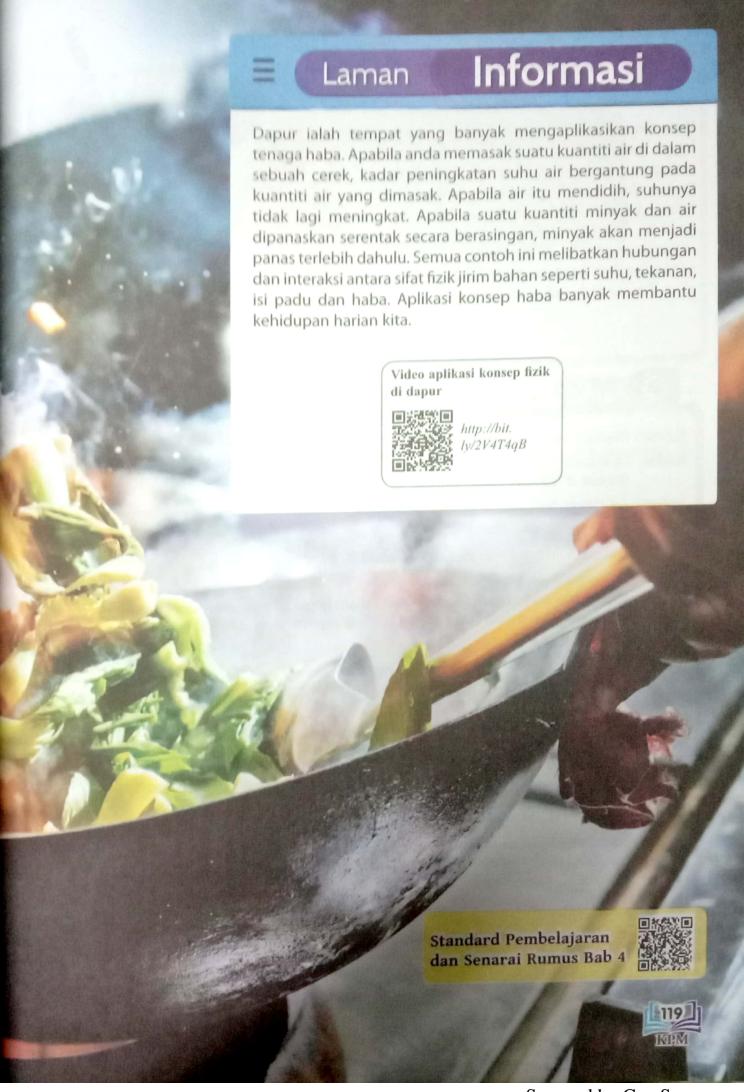
- (a) Hitungkan nilai pecutan graviti, halaju lepas dan tempoh orbit bagi tiap-tiap planet. 🦡
- (b) Bagaimanakah nilai pecutan graviti, halaju lepas dan tempoh orbit mempengaruhi kesesuaian suatu planet yang baharu untuk didiami manusia?
- (c) Seterusnya, pilih planet yang paling sesuai didiami manusia. Beri sebab bagi pilihan anda.


13. Andaikan manusia telah berjaya mendiami planet Marikh. Anda bersama sekumpulan saintis dikehendaki mereka bentuk satu sistem orbit bagi satelit-satelit buatan yang akan mengorbit Marikh. Satelit-satelit buatan tersebut terdiri daripada satelit kaji cuaca, satelit pemetaan permukaan planet dan satelit komunikasi. Jadual 3 menunjukkan maklumat mengenai planet Marikh.

Iadual 3

Jisim / kg	6.42×10^{23}
Jejari planet / m	3.40 × 10 ⁶
Tempoh putaran / jam	24.6

Berdasarkan maklumat dalam Jadual 3, cadangkan ciri-ciri orbit satelit dari segi ketinggian orbit, tempoh orbit, laju linear satelit, tapak pelancaran serta faktor-faktor lain yang sesuai.



Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

4. Keseimbangan Terma

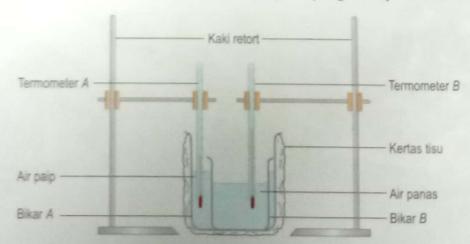
Perhatikan Gambar foto 4.1. Apabila sebatang sudu logam yang sejuk dimasukkan ke dalam air kopi yang panas, sudu dan air kopi itu dikatakan bersentuhan secara terma kerana tenaga haba boleh dipindahkan di antara dua jasad itu. Bagaimanakah sudu logam dapat menyejukkan air kopi yang panas? Apakah keadaan akhir yang akan dicapai oleh sudu dan air kopi?

Gambar foto 4.1 Air kopi yang panas

Tujuan: Menunjukkan keseimbangan terma di antara dua jasad yang bersentuhan secara terma

Radas: Dua buah kaki retort, dua batang termometer, bikar 250 ml dilabel A, bikar 50 ml

dilabel B, silinder penyukat dan jam randik


Bahan: Air panas 50°C, air paip dan kertas tisu

Arahan:

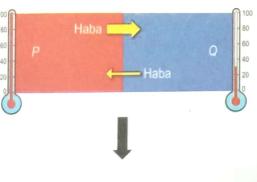
Balut bikar A dengan tisu dan isi dengan 150 ml air paip.

Isi 40 ml air panas 50°C ke dalam bikar B.

 Letakkan bikar B ke dalam bikar A. Kemudian, letakkan termometer A dan termometer B masing-masing ke dalam bikar A dan bikar B seperti yang ditunjukkan dalam Rajah 4.1.

Rajah 4.1

 Rekod bacaan termometer A dan termometer B dalam sela masa 30 s sehingga bacaar kedua-dua termometer itu menjadi sama. (Aktiviti ini biasanya boleh dijalankan dalam tempoh masa lima minit)


Jadual 4.1

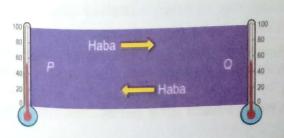
Masa, t/s	Suhu termometer A / °C	Suhu termometer B / °C
0		
30.0		
60.0		

Perbincangan:

- 1. Mengapakah bikar A dibalut dengan kertas tisu?
- 2. Huraikan perubahan suhu air panas dan air sejuk.
- 3. Apakah yang menyebabkan perubahan suhu yang diperhatikan?

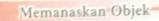
Apabila dua objek **bersentuhan secara terma**, suhu objek yang panas akan menurun, manakala suhu objek yang sejuk akan meningkat sehingga **suhu** kedua-dua objek itu menjadi **sama**. Pemindahan bersih haba antara dua objek itu adalah sifar. Kedua-dua objek itu dikatakan berada dalam keadaan **keseimbangan terma**. Rajah 4.2 menerangkan pengaliran haba antara dua objek yang bersentuhan secara terma sehingga mencapai keseimbangan terma.

Objek yang panas, *P* bersentuhan secara terma dengan objek yang sejuk, *Q*. Kadar pemindahan haba dari *P* ke *Q* adalah lebih tinggi daripada kadar pemindahan haba dari *Q* ke *P*.



Terdapat pemindahan haba bersih dari *P* ke *Q*. Maka, suhu *P* menurun dan suhu *Q* meningkat.

Suhu P dan suhu Q menjadi sama. Kadar pemindahan haba dari P ke Q adalah sama dengan kadar pemindahan haba dari Q ke P. Pemindahan bersih haba antara P dengan Q adalah sifar. P dan Q berada dalam keadaan keseimbangan terma.


Rajah 4.2 Pengaliran tenaga haba dan keseimbangan terma

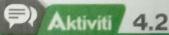
Keseimbangan Terma dalam Kehidupan Harian

Keseimbangan terma menyebabkan dua objek yang bersentuhan secara terma mencapai suhu yang sama. Rajah 4.3 menunjukkan contoh keseimbangan terma dalam kehidupan harian.

Udara panas di dalam ketuhar bersentuhan secara terma dengan adunan kek. Haba dari udara panas mengalir ke adunan kek. Hal ini menyebabkan adunan kek dipanaskan sehingga masak.

Menyejukkan Objek

Apabila makanan disimpan di dalam peti sejuk, haba dari makanan mengalir ke udara di dalam peti sejuk sehingga keseimbangan terma berlaku. Suhu makanan menurun dan makanan kekal segar untuk tempoh yang lebih lama.



Termometer klinik diletakkan di bawah lidah pesakit. Haba dari badan pesakit mengalir ke termometer sehingga suhu kedua-duanya menjadi sama. Suhu badan pesakit dapat ditentukan kerana keseimbangan terma berlaku.

Minuman disejukkan dengan menambahkan beberapa ketulan ais. Ais menyerap haba dari minuman dan melebur. Cairan dari ais pula menyerap haba dari minuman sehingga mencapai keseimbangan terma.

Rajah 4.3 Keseimbangan terma dalam kehidupan harian

Tujuan: Membincangkan situasi dan aplikasi keseimbangan terma dalam kehidupan harian Arahan:

- Jalankan aktiviti ini secara berkumpulan.
- 2. Dapatkan maklumat mengenai situasi dan aplikasi lain keseimbangan terma dalam kehidupan harian. Maklumat tersebut boleh didapati dari sumber bacaan atau carian d laman sesawang.
- 3. Kemudian, bincangkan mengenai pengaliran tenaga haba yang berlaku sehingga keseimbangan terma dicapai.
- 4. Persembahkan hasil perbincangan kumpulan anda dalam bentuk peta pemikiran.

Menentu Ukur Sebuah Termometer Cecair dalam Kaca Menggunakan Dua Takat Tetap

Sebuah termometer yang tidak mempunyai skala boleh ditentu ukur menggunakan dua takat tetap suhu. Dua takat tetap bagi air suling yang digunakan ialah takat lebur ais, iaitu 0°C dan takat didih air, iaitu 100°C.

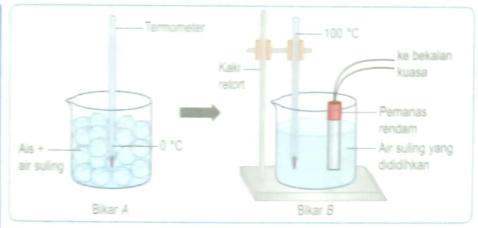
Fail INFO

Proses penentu ukuran menggunakan sifat termometrik yang ada pada cecair dalam kaca. Sifat termometrik bermaksud sifat fizikal yang boleh diukur (seperti panjang turus cecair dalam termometer) yang berubah dengan perubahan suhu.

Gerbang SAINS TEKNOLOGI

Termometer masakan digunakan untuk menyukat suhu makanan semasa dan selepas penyediaan makanan. Kawalan masa dan suhu yang tidak baik akan menyebabkan keracunan makanan. Oleh sebab itu. penentu ukuran termometer ini secara berkala adalah sangat penting.

Tujuan: Menentu ukur sebuah termometer cecair dalam kaca menggunakan takat didih air suling dan takat lebur ais

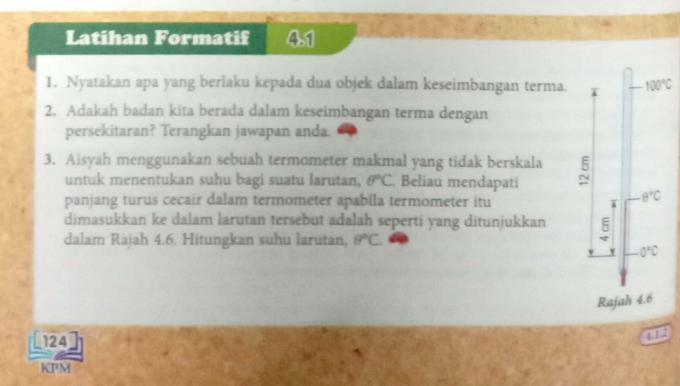

Radas: Termometer, pembaris, bikar 250 ml, pemanas rendam, bekalan kuasa dan kaki retort

Bahan: Ais, air suling dan pita pelekat legap

Arahan:

- 1. Tutup skala termometer dengan pita pelekat legap supaya skalanya tidak kelihatan.
- 2. Sediakan dua buah bikar. Isi bikar A dengan ais dan sedikit air suling. Isi bikar B dengan air suling bersama dengan pemanas rendam.
- 3. Masukkan termometer ke dalam bikar A. Tunggu sehingga paras turus cecair dalam termometer tidak lagi berubah. Kemudian, tandakan paras turus cecair pada batang termometer. Labelkan paras ini sebagai 0°C (Rajah 4.4).
- 4. Keluarkan termometer dari bikar A dan hidupkan pemanas rendam di dalam bikar B.
- 5. Apabila air suling di dalam bikar B sedang mendidih, masukkan termometer ke dalam bikar B. Tunggu sehingga paras turus cecair dalam termometer tidak lagi berubah. Kemudian, tandakan paras turus cecair pada batang termometer. Labelkan paras ini sebagai 100°C (Rajah 4.4). Matikan pemanas rendam.

Rajah 4.4


Rajah 4.5

- Ukur panjang dari tanda 0°C hingga ke tanda 100°C sebagai L₁₀₀ (Rajah 4.5).
- 7. Sediakan sebuah bikar C dan isi bikar dengan air paip.
- 8. Masukkan termometer yang telah ditentu ukur ke dalam bikar C. Tunggu sehingga paras turus cecair dalam termometer tidak lagi berubah. Kemudian, tandakan paras turus cecair pada batang termometer. Labelkan paras ini sebagai $heta^{\circ}$ C.
- 9. Ukur panjang dari tanda 0°C hingga ke tanda θ °C sebagai L_{θ}
- 10. Hitungkan suhu air paip, θ menggunakan rumus, $\theta = \frac{L_{\theta}}{I} \times 100^{\circ}\text{C}$

Perbincangan:

- 1. Mengapakah bebuli termometer tidak boleh menyentuh dasar atau dinding bikar semasa membuat pengukuran?
- 2. Mengapakah anda perlu menunggu sehingga paras turus cecair dalam termometer tidak lagi berubah sebelum membuat tanda pada batang termometer?

Penentu ukuran ialah proses penskalaan pada termometer untuk membuat pengukuran suhu. Suhu 0°C ialah takat tetap bawah dan suhu 100°C ialah takat tetap atas. Panjang turus cecair dalam termometer antara takat tetap bawah dengan takat tetap atas perlu dibahagikan kepada 100 bahagian yang sama. Dengan ini, termometer tersebut telah ditentu ukur dan boleh digunakan untuk mengukur suhu antara 0°C dengan 100°C.

Rajah 4.7 menunjukkan dua situasi yang berlainan. Haba dari matahari memanaskan pasir dan air laut untuk jangka masa yang sama. Namun, pasir cepat menjadi panas dan air laut lambat menjadi panas.

Hal ini boleh dijelaskan berdasarkan konsep muatan haba. Objek berlainan mempunyai muatan haba yang berlainan. Pasir mempunyai muatan haba yang rendah dan cepat menjadi panas manakala air laut mempunyai muatan haba yang tinggi dan lambat menjadi panas.

Muatan haba, C bagi suatu objek ialah kuantiti haba yang diperlukan untuk menaikkan suhu objek itu sebanyak 1°C.

$$C = \frac{Q}{\Delta \theta}$$
, iaitu $Q =$ kuantiti haba yang dibekalkan $\Delta \theta =$ perubahan suhu

Unit $C =$ J °C⁻¹

Apabila 100 J haba dibekalkan kepada objek X dan Y, objek X mengalami peningkatan suhu sebanyak 1°C dan objek Y sebanyak 2°C. Berapakah muatan haba masing-masing bagi objek X dan Y?

Muatan haba bagi objek
$$X$$
, $C_X = \frac{100 \text{ J}}{1^{\circ}\text{C}}$
= $100 \text{ J} \,^{\circ}\text{C}^{-1}$
Muatan haba bagi objek Y , $C_Y = \frac{100 \text{ J}}{2^{\circ}\text{C}}$
= $50 \text{ J} \,^{\circ}\text{C}^{-1}$

Objek X mempunyai muatan haba yang lebih tinggi daripada objek Y. Oleh itu, peningkatan suhu objek X kurang daripada objek Y.

Muatan haba bagi suatu objek meningkat apabila jisim objek tersebut meningkat. Sebagai contoh, dua buah cerek yang serupa, satu diisi penuh dengan air dan satu lagi diisi separuh dengan air. Air di dalam cerek yang diisi penuh akan mengambil masa yang lebih lama untuk mendidih berbanding dengan air di dalam cerek yang diisi separuh. Hal ini menunjukkan bahawa air dengan jisim yang besar mempunyai muatan haba yang tinggi berbanding dengan air dengan jisim yang kecil. Rajah 4.8 menunjukkan beberapa situasi harian yang melibatkan muatan haba.

Muatan Haba Tentu Bahan

Rajah 4.9 menunjukkan seorang jurutera bahan sedang membuat pertimbangan untuk memilih satu logam yang sesuai sebagai bahan pembinaan bangunan. Logam itu mestilah mempunyai sifat lambat menjadi panas. Oleh sebab muatan haba suatu logam bergantung pada jisim objek itu, perbandingan antara logam yang berlainan perlu dibuat berdasarkan muatan haba bagi 1 kg setiap logam. Sifat ini dikenali sebagai muatan haba tentu, c.

Rajah 4.9 Seorang jurutera bahan membandingkan muatan haba tentu antara logam yang berlainan


Muatan haba tentu, c bagi suatu bahan ialah kuantiti haba yang diperlukan untuk menaikkan suhu sebanyak 1°C bagi jisim 1 kg bahan itu.

$$c=rac{Q}{m\Delta\theta}$$
, iaitu $Q=$ kuantiti haba yang dibekalkan (J) $m=$ jisim (kg) $\Delta\theta=$ perubahan suhu (°C atau K)

Unit bagi $c = J kg^{-1} \circ C^{-1}$ atau J kg⁻¹ K⁻¹

Kuantiti haba, Q yang diserap atau dibebaskan oleh suatu objek boleh ditentukan menggunakan rumus $Q=mc\Delta\theta$.

Sebagai contoh, muatan haba tentu bagi logam aluminium ialah 900 J kg $^{-1}$ °C $^{-1}$. Hal ini bermaksud 1 kg logam aluminium memerlukan 900 J haba untuk meningkatkan suhunya sebanyak 1°C.

Setiap jenis bahan mempunyai nilai muatan haba tentu yang tertentu. Jadual 4.2 menunjukan nilai muatan haba tentu bagi beberapa jenis bahan.

Jadual 4.2 Muatan haba tentu bagi bahan yang berlainan

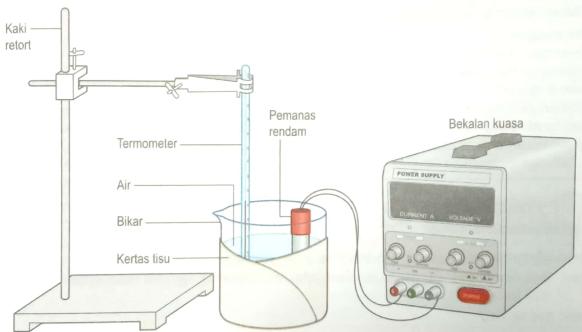
Jenis bahan	Bahan	Muatan haba tentu, c / J kg ⁻¹ °C ⁻¹	Jenis bahan	Bahan	Muatan hala tentu,
Cecair	Air	4 200	Logam	Aluminium	900
	Air laut	3 900		Besi	450
	Etanol	2 500		Kuprum	390
	Parafin	2 100		Emas	300
	Minyak masak	1 850		Merkuri	140
	Minyak zaitun	1 890		Plumbum	130
Gas	Metana	2 200	Bukan logam	Polikarbonat	1 250
	Stim (pada suhu 100°C)	2 020		Kayu	1 700
				Konkrit	850
	Neon	1 030		Pasir	800
	Udara	1 000		Kaca	670

Air merupakan bahan yang mempunyai nilai muatan haba tentu yang tinggi. Air dapat menyerap banyak haba dengan peningkatan suhu yang kecil. Hal ini menjadikan air sebagai agen penyejuk yang baik. Bahan logam pula mempunyai nilai muatan haba tentu yang lebih rendah berbanding dengan bahan bukan logam. Oleh itu, objek yang diperbuat daripada bahan logam cepat menjadi panas apabila dibekalkan suatu kuantiti haba.

Berdasarkan Jadual 4.2, nilai muatan haba tentu bagi air lebih tinggi berbanding dengan logam seperti aluminium.

Tujuan: Menentukan nilai muatan haba tentu air

Radas: Bekalan kuasa, pemanas rendam, bikar, jam randik, termometer, kaki retort dan


neraca elektronik

Bahan: Air dan kertas tisu

Prosedur:

1. Balut bikar dengan kertas tisu.

- 2. Letakkan bikar di atas neraca elektronik dan set semula bacaan neraca itu kepada nilai sifar.
- 3. Isi air ke dalam bikar sehingga tiga per empat penuh.
- 4. Ambil bacaan jisim air, m yang ditunjukkan oleh neraca elektronik. Rekodkan bacaan anda.
- 5. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.10.

Rajah 4.10

- 6. Ambil bacaan suhu awal air, θ_{1} . Rekodkan bacaan anda.
- 7. Hidupkan pemanas rendam dan pada masa yang sama, mulakan jam randik.
- 8. Perhatikan perubahan bacaan termometer.
- 9. Selepas masa lima minit, matikan pemanas rendam. Ambil bacaan termometer tertinggi sebagai suhu akhir air, θ_2 . Rekodkan bacaan anda.

Pemanas rendam mengubah tenaga elektrik kepada tenaga haba. Tenaga haba yang dibekal oleh pemanas rendam ialah O = Pt, iaitu P = kuasa pemanas dan i = masa pemanas itu dihidupkan.

Perubahan suhu air, $\Delta\theta = \theta_2 - \theta_1$. Bagi eksperimen ini, rumus $Q = mc\Delta\theta$ diungkapkan sebagai $Pt = mc (\theta_2 - \theta_3)$

Keputusan:

Iadual 4.3

Kuasa pemanas rendam, P / W	
Masa pemanasan, t / s	
Jisim air, m / kg	
Suhu awal air, $\theta_{_{\parallel}}$ / °C	
Suhu akhir air, $\theta_{\scriptscriptstyle \rm I}$ / °C	

Analisis data:

Hitungkan muatan haba tentu air menggunakan rumus, $c = \frac{Pt}{m(\theta_2 - \theta_2)}$

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- Mengapakah bikar itu perlu dibalut dengan kertas tisu?
- 2. Mengapakah suhu air akhir, $heta_2$ tidak diambil sebaik sahaja masa pemanasan lima minit tamat?
- 3. Diberi nilai muatan haba tentu air ialah 4 200 J kg⁻¹ °C⁻¹. Bandingkan nilai muatan haba tentu air yang diperoleh daripada eksperimen dengan nilai yang diberi. Terangkan perbezaan antara dua nilai tersebut (jika ada).
- 4. Cadangkan langkah-langkah untuk meningkatkan kejituan keputusan eksperimen ini.

Tujuan: Menentukan nilai muatan haba tentu aluminium

Radas: Bekalan kuasa, pemanas rendam, blok aluminium 1 kg, jam randik, termometer

dan kaki retort

Bahan: Kertas tisu

Prosedur:

Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.11.

Rajah 4.11

- 2. Ambil bacaan suhu awal blok aluminium, $heta_1$ dan rekodkan bacaan anda.
- 3. Hidupkan pemanas rendam dan pada masa yang sama, mulakan jam randik.
- 4. Selepas masa lima minit, matikan pemanas rendam. Ambil bacaan tertinggi termometer sebagai suhu akhir aluminium blok, θ_2 . Rekodkan bacaan anda.

Keputusan:

Jadual 4.4

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Kuasa pemanas rendam, P / W	
Masa pemanasan, t / s	
Jisim aluminium, m / kg	
Suhu awal aluminium, $\theta_{_{\rm I}}$ / °C	
Suhu akhir aluminium, θ_2 / °C	

Analisis data:

Hitungkan muatan haba tentu aluminium menggunakan rumus, $c = \frac{Pt}{m(\theta_2 - \theta_1)}$

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- 1. Apakah yang boleh dilakukan untuk memperoleh sentuhan terma yang lebih baik antara bebuli termometer dengan blok aluminium?
- 2. Diberi nilai muatan haba tentu aluminium ialah 900 J kg⁻¹ °C⁻¹. Bandingkan nilai muatan haba tentu aluminium yang diperoleh daripada eksperimen dengan nilai yang diberi. Terangkan perbezaan antara dua nilai tersebut (jika ada).

Aplikasi Muatan Haba Tentu

Pengetahuan mengenai muatan haba tentu sangat penting dalam kehidupan harian, kejuruterah bahan dan juga untuk memahami beberapa fenomena alam.

Pemilihan bahan binaan rumah tradisional di pelbagai zon iklim

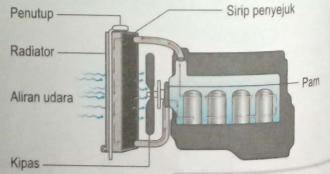
Kayu mempunyai muatan haba tentu yang tinggi dan lambat menjadi panas. Di kawasan cuaca panas, rumah tradisional dibina daripada kayu yang berfungsi sebagai penebat haba daripada bahang cahaya matahari. Di kawasan cuaca sejuk, rumah tradisional juga dibina daripada kayu. Haba dari unggun api yang dinyalakan di dalam rumah kayu tidak dapat mengalir keluar kerana kayu berfungsi sebagai penebat haba yang baik.

Iklim Khatulistiwa

Iklim sejuk

Peralatan memasak

Kuali logam



Periuk tanah liat

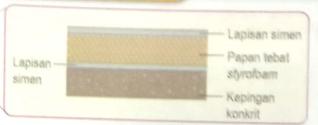
Kuali diperbuat daripada logam yang mempunyai muatan haba tentu yang rendah Oleh itu, makanan boleh digoreng pada suh yang tinggi dalam tempoh masa yang singka Periuk tanah liat pula diperbuat daripad tanah liat yang mempunyai muatan hah tentu yang tinggi. Oleh itu, makanan boleh kekal panas dalam tempoh masa yang lama

Sistem radiator kereta

Pembakaran bahan api dalam enjin kereta menghasilkan kuantiti haba yang besar. Haba ini perlu dibebaskan untuk mengelakkan pemanasan enjin. Air mempunyai muatan haba tentu yang tinggi dan digunakan sebagai agen penyejuk. Pam akan mengepam air ke dalam blok enjin. Air akan mengalir melalui blok enjin untuk menyerap haba yang terhasil. Air panas mengalir ke radiator. Udara sejuk disedut masuk oleh kipas supaya haba di dalam air panas dapat dibebaskan dengan cepat melalui sirip penyejuk.

Video sistem radiator kerela

http://bit.
ly/329kUSH


Lapisan luar kapsul angkasa

Kapsul angkasa dalam perjalanan kembali ke Bumi menghadapi rintangan udara apabila memasuki atmosfera. Geseran ini meningkatkan suhu dan menyebabkan kapsul angkasa itu terbakar. Oleh itu lapisan luar kapsul angkasa diperbuat daripada bahan dengan muatan haba tentu dan takat lebur yang tinggi.

Penghasilan bahan-bahan terkini dalam pembinaan bangunan hijau

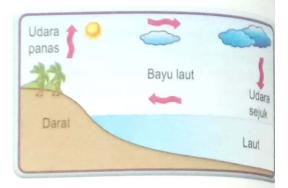
Bangunan Berlian, Suruhanjaya Tenaga dibina dengan bumbung konkrit bertebat, iaitu bumbung dilengkapi dengan penebat menggunakan papan styrofoam. Styrofoam mempunyai muatan haba tentu yang tinggi dan dapat mengurangkan penyerapan haba di persekitaran untuk mengurangkan suhu di dalam bangunan.

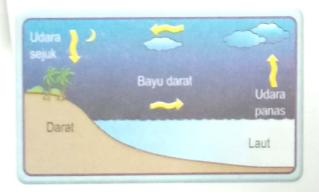
Bangunan Berlian

http://bit. b/2M7hvQt

Peralatan memasak

Badan periuk diperbuat daripada aluminium yang mempunyai muatan haba tentu yang rendah. Hal ini membolehkan periuk dipanaskan dengan cepat. Pemegang periuk pula diperbuat daripada plastik yang mempunyai muatan haba tentu yang tinggi. Hal ini untuk memastikan pemegang periuk lambat menjadi panas dan selamat dikendalikan.





Bayu laut

Daratan mempunyai muatan haba tentu yang lebih rendah daripada laut. Oleh itu, suhu daratan meningkat dengan lebih cepat daripada suhu laut pada waktu siang. Udara di daratan menjadi panas dan naik ke atas. Udara yang lebih sejuk daripada laut akan bergerak ke arah daratan sebagai bayu laut.

Bayu darat

Laut mempunyai muatan haba tentu yang lebih ting daripada daratan. Oleh itu, suhu laut menurun lebi lambat daripada suhu daratan pada waktu malam. Udar di atas permukaan laut yang panas akan naik ke ata Udara yang lebih sejuk daripada daratan akan bergera ke arah laut sebagai bayu darat.

Tujuan: Mencari maklumat mengenai aplikasi muatan haba tentu

Arahan:

- 1. Jalankan aktiviti ini dalam bentuk Round Table.
- 2. Dapatkan maklumat mengenai aplikasi muatan haba tentu yang berkaitan dengan:
 - (a) Kehidupan harian
 - (b) Kejuruteraan bahan
 - (c) Fenomena alam
- Maklumat tersebut boleh didapati daripada sumber bacaan di perpustakaan atau di Internet.
- 4. Setiap ahli kumpulan perlu mencatat maklumat yang diperoleh pada kertas yang sama
- 5. Persembahkan hasil dapatan anda.

Menyelesaikan Masalah yang Melibatkan Muatan Haba Tentu

Contoh 1

Sebuah blok logam berjisim 0.5 kg dipanaskan oleh sebuah pemanas elektrik berkuasa 50 W selama 90 s. Suhu blok itu meningkat dari 20°C hingga 45°C. Hitungkan muatan haba tentu logam itu.

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Peningkatan suhu,
$$\Delta\theta = 45 - 20$$

= 25°C

Jisim blok, m = 0.5 kg Kuasa pemanas, P = 50 W Masa pemanasan, t = 90 s

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

$$c = \frac{Q}{m\Delta\theta}$$
$$= \frac{Pt}{m\Delta\theta}$$

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$c = \frac{(50)(90)}{(0.5)(25)}$$
= 360 J kg⁻¹ °C⁻¹

Andaian: Semua haba yang dibekalkan oleh pemanas elektrik diserap oleh blok logam itu. Tiada haba hilang ke persekitaran.

Contoh 2

20 g air mendidih pada suhu 100°C dituang ke dalam sebuah gelas yang mengandungi 200 g air pada suhu bilik 28°C. Hitungkan suhu akhir campuran air itu.

Penyelesaian:

Katakan suhu akhir campuran ialah *y*. Bagi air didih:

Jisim,
$$m_1 = 20 \text{ g}$$

= 0.02 kg

Perubahan suhu, $\Delta \theta_1 = (100 - y)^{\circ}C$

Bagi air pada suhu bilik:

Jisim,
$$m_2 = 200 \text{ g}$$

= 0.20 kg

Perubahan suhu, $\Delta \theta_2 = (y - 28)^{\circ}$ C Muatan haba tentu air, c = 4 200 J kg⁻¹ °C⁻¹

$$Q_{1} = Q_{2}$$

$$m_{1}c\Delta\theta_{1} = m_{2}c\Delta\theta_{2}$$

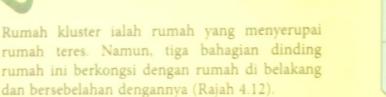
$$0.02 (4 200)(100 - y) = 0.20 (4 200) (y - 28)$$

$$8 400 - 84y = 840y - 23 520$$

$$924y = 31 920$$

$$y = 34.55^{\circ}C$$

Oleh itu, suhu akhir campuran ialah 34.55°C.


Andaian: Tiada haba diserap atau dibebaskan ke persekitaran. Pemindahan haba berlaku di antara air didih dengan air pada suhu bilik sahaja. Maka, haba yang dibebaskan oleh air didih sama dengan haba yang diserap oleh air pada suhu bilik.

Tujuan: Membina model rumah kluster yang boleh mengatasi masalah lampau panas

Arahan:

- Jalankan aktiviti ini secara berkumpulan.
- 2. Baca dan fahami maklumat berikut.

Gambar foto 4.2 menunjukkan contoh rumah kluster yang hanya mempunyai satu pintu untuk keluar dan masuk manakala tingkap rumah hanya di bahagian hadapan rumah. Reka bentuk rumah ini dapat meminimumkan penggunaan tanah. Namun begitu, semasa negara kita mengalami fenomena El Nino dengan kenaikan suhu yang melampau, penduduk di perumahan teres kluster menerima kesan panas yang melampau.

Rajah 4.12 Pelan rumah kluster

Gambar foto 4.2 Contoh rumah kluster

- 3. Berdasarkan maklumat tersebut, analisis situasi dengan mencatat fakta dan masalah yang berkaitan dengan keadaan lampau panas rumah kluster.
- Sumbang saran beberapa penyelesaian masalah tersebut dan buat lakaran model bagi penyelesaian yang dipilih untuk diuji.
- 5. Bina model berdasarkan lakaran model anda.
- 6. Pamer dan persembahkan model.

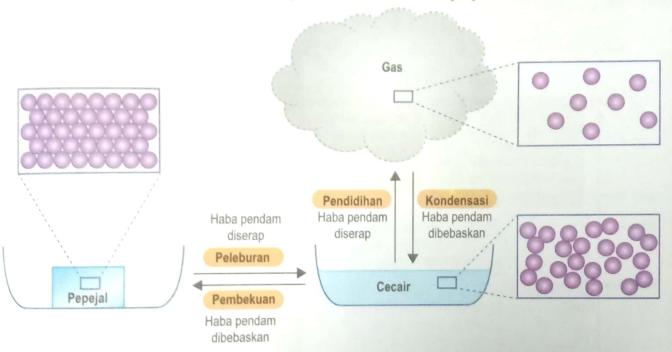
Latihan Formatif

1. Apakah perbezaan antara muatan haba dengan muatan haba tentu?

4.2

- Berapakah tenaga haba yang diperlukan untuk meningkatkan suhu sebanyak 10°C bagi jisim 0.2 kg emas?
 [Diberi nilai muatan haba tentu emas ialah 300 J kg⁻¹ °C⁻¹]
- 3. Sebuah bekas mengandungi 200 g air pada suhu awal 30°C. Paku besi berjisim 200 g pada suhu 50°C direndam ke dalam air itu. Berapakah suhu akhir air itu? Nyatakan andaian yang anda perlu buat dalam penghitungan anda.

 [Diberi nilai muatan haba tentu air ialah 4 200 J kg⁻¹ °C⁻¹ dan besi ialah 450 J kg⁻¹ °C⁻¹]



4.3 Haba Pendam Tentu

Haba Pendam

Jirim boleh wujud dalam tiga keadaan, iaitu pepejal, cecair dan gas. Perbezaan antara tiga keadaan jirim dari segi susunan dan pergerakan molekul menunjukkan bahawa ikatan antara molekul pepejal adalah lebih kuat daripada ikatan antara molekul cecair. Oleh sebab molekul gas bebas bergerak secara rawak, maka ikatan antara molekul gas adalah paling lemah.

Rajah 4.13 menunjukkan proses perubahan fasa jirim. Semasa proses perubahan fasa jirim seperti peleburan dan pendidihan, suhu adalah tetap walaupun haba terus dibekalkan. Haba yang diserap semasa peleburan dan pendidihan tanpa perubahan suhu dikenali sebagai haba pendam. Semasa kondensasi dan pembekuan, haba pendam dibebaskan tanpa perubahan suhu.

Rajah 4.13 Proses perubahan fasa jirim

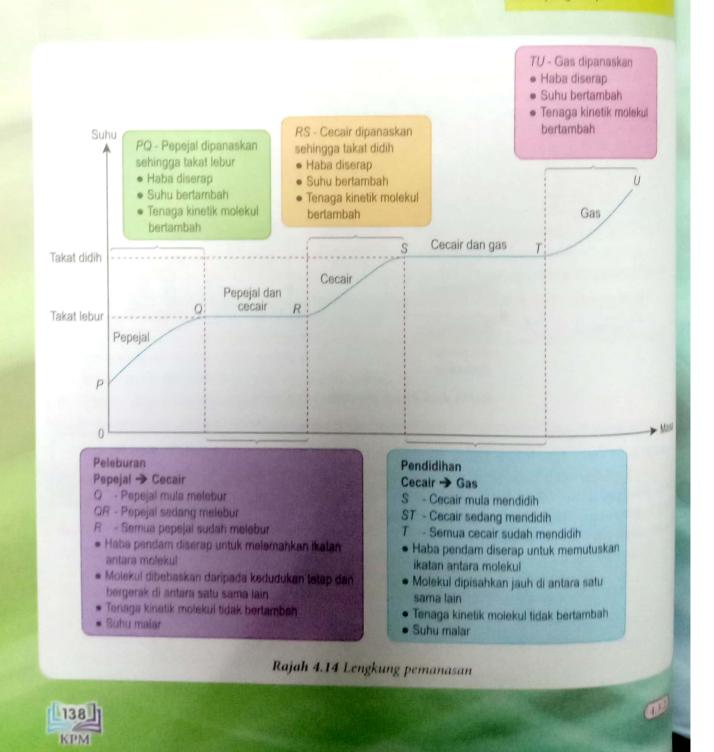
Haba Pendam Tentu

Kuantiti haba yang diperlukan untuk mengubah keadaan jirim suatu objek bergantung pada jisim objek itu dan jenis bahannya. Haba pendam tentu, *I* bagi suatu bahan ialah kuantiti haba, *Q* yang diserap atau dibebaskan semasa perubahan fasa bagi 1 kg bahan tanpa perubahan suhu.

Suatu objek berjisim, *m* menyerap kuantiti haba, *Q* semasa perubahan fasa. Maka, haba pendam tentu bagi bahan objek itu ialah

$$l = \frac{Q}{q}$$

Unit S.I. bagi haba pendam tentu ialah J kg-1,


Haba pendam tentu pelakuran, I, bagi suatu bahan ialah kuantiti haba, Q yang diserap semasa peleburan atau kuantiti haba yang dibebaskan semasa pembekuan bagi 1 kg bahan itu tanpa perubahan suhu.

Haba pendam tentu pengewapan, $l_{_{\rm V}}$ bagi suatu bahan ialah kuantiti haba yang diserap semasa pendidihan atau kuantiti haba yang dibebaskan semasa kondensasi bagi 1 kg bahan itu tanpa perubahan suhu.

Rajah 4.14 menunjukkan lengkung pemanasan apabila suatu objek berubah dari keadaan pepejal kepada gas.

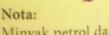
Fail INFO

Berdasarkan Teori Kinetik Jirin semakin tinggi tenaga kinetik purata molekul, semakin tinggi suhu suatu objek. Haba pendan yang diserap semasa peleburan dan pendidihan tidak menamba tenaga kinetik purata molekul. Oleh itu, peleburan dan pendidihan berlaku pada suhu yang tetap.

Tujuan: Membanding dan membincangkan:

- haba pendam tentu pelakuran ais dan lilin
- haba pendam tentu pengewapan air dan minyak

Arahan:


- 1. Jalankan aktiviti ini dalam bentuk Think-Pair-Share.
- 2. Teliti maklumat yang diberi dalam Jadual 4.5.

Jadual 4.5

Bahan	Fasa pada suhu bilik	Takat lebur / °C	Haba pendam tentu pelakuran, l _i / J kg ⁻¹	Takat didih / °C	Haba pendam tentu pengewapan, l, / J kg ⁻¹
Lilin	Pepejal	46 hingga 68	1.45×10^{5} hingga 2.10×10^{5}	-	
Plumbum	Pepejal	327	0.25×10^{5}	1 750	8.59×10^{5}
Kuprum	Pepejal	1 083	2.07×10^{5}	2 566	47.3 × 10 ⁵
Ais	Pepejal	0	3.34×10^{5}		-
Air	Cecair	-	-	100	22.6 × 10 ⁵
Minyak petrol	Cecair	-	- 101	35 hingga 200	3.49×10^{5}
Minyak diesel	Cecair			180 hingga 360	2.56×10^{5}
Minyak zaitun	Cecair	6	2.67×10^5		
Etanol	Cecair	-114	1.04×10^{5}	78	8.55×10^{5}
Oksigen	Gas	-219	0.14×10^{5}	-183	2.13 × 10 ⁵
Nitrogen	Gas	-210	0.26×10^{5}	-196	2.00×10^{5}

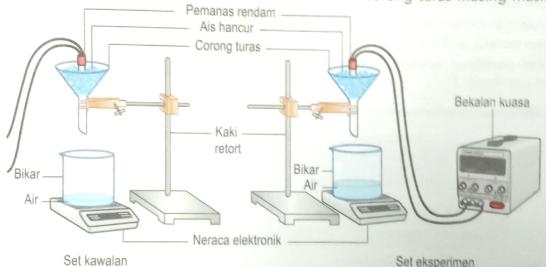
- 3. Berdasarkan maklumat dalam Jadual 4.5, bincangkan soalan-soalan berikut:
 - (a) Bandingkan haba pendam tentu pelakuran bagi ais dan lilin. Seterusnya, nyatakan perbezaan antara ais dengan lilin dari segi kekuatan ikatan antara molekul.
 - (b) Bandingkan haba pendam tentu pengewapan bagi air dan minyak petrol. Kemudian, nyatakan perbezaan antara air dengan minyak petrol dari segi kekuatan ikatan antara molekul dan jarak pemisahan di antara molekul dalam fasa gas.
 - (c) Bagi satu bahan yang tertentu, mengapakah haba pendam tentu pengewapan leb besar daripada haba pendam tentu pelakuran?
- 4. Persembahkan hasil perbincangan anda dalam bentuk grafik.

Minyak petrol dan diesel merupakan hidrokarbon yang mempunyai takat didih yang berbeza. Berdasarkan Aktiviti 4.6, setiap bahan mempunyai nilai haba pendam tentu yang berbeza daripada bahan lain. Bagaimanakah nilai haba pendam tentu ini ditentukan?

4.3 •

Tujuan: (i) Menentukan haba pendam tentu pelakuran ais, I,

(ii) Menentukan haba pendam tentu pengewapan air, /


A Haba pendam tentu pelakuran ais, I,

Radas: Pemanas rendam, corong turas, bikar, neraca elektronik, bekalan kuasa, jam randik

Bahan: Ais hancur

Prosedur:

- Letakkan bikar bagi set eksperimen dan set kawalan masing-masing di atas neraca elektronik. Set semula kedua-dua neraca elektronik kepada bacaan sifar.
- Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.16. Pada awalnya, keduadua bikar dan neraca elektronik tidak berada di bawah corong turas masing-masing.

Rajah 4.16

- Hidupkan pemanas rendam bagi set eksperimen sahaja. Apabila air telah menitis keluar daripada corong turas pada kadar yang tetap, letakkan bikar dan neraca elektronik masing-masing di bawah corong turas. Mulakan jam randik.
- 4. Selepas masa, t=10 minit, rekodkan bacaan jisim air yang dikumpulkan di dalam bikar set eksperimen, m_1 dan set kawalan, m_2 .
- 5. Matikan pemanas rendam dan rekodkan kuasa pemanas, P.

Keputusan:

Jadual 4.6

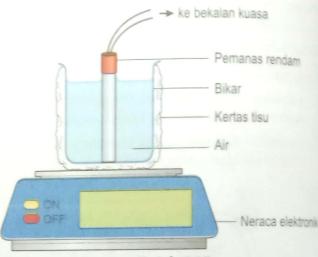
Jisim air yang dikumpulkan di dalam bikar set eksperimen, m_i / kg	
Jisim air yang dikumpulkan di dalam bikar set kawalan, m, / kg	
Kuasa pemanas, P / W	
Masa pemanasan, t / s	

Analisis data:

Hitungkan haba pendam tentu pelakuran ais dengan menggunakan rumus, I =

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?


B) Haba pendam tentu pengewapan air, I,

Radas: Pemanas rendam berkuasa tinggi (500 W), bekalan kuasa, bikar, neraca elektronik dan jam randik

Bahan: Air dan kertas tisu

Prosedur:

- 1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.17.
- 2. Hidupkan pemanas rendam dan tunggu sehingga air mendidih.
- 3. Apabila air mendidih, mulakan jam randik dan pada masa yang sama, rekodkan bacaan neraca elektronik, m...
- 4. Selepas masa, t = 5 minit, rekodkan bacaan neraca elektronik, m2.
- 5. Matikan pemanas rendam dan rekodkan kuasa pemanas, P.

Rajah 4.17

Keputusan:

ladual 4.7

Bacaan awal neraca elektronik, m ₁ / kg	
Bacaan akhir neraca elektronik, m ₂ / kg	
Masa yang diambil, t / s	
Kuasa pemanas, P / W	

Analisis data:

Hitungkan haba pendam tentu pengewapan air dengan menggunakan rumus, $l = \frac{Pl}{(m_i - m_i)}$

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- 1. Mengapakah satu set kawalan perlu disediakan bagi eksperimen A dan tidak perlu untuk eksperimen B?
- 2. Diberi nilai haba pendam tentu pelakuran ais ialah 3.34 x 10⁵ J kg⁻¹. Bandingkan nilai haba pendam tentu pelakuran ais yang diperoleh daripada eksperimen A dengan nilal yang diberi. Bincangkan perbezaan antara dua nilai tersebut (jika ada).
- 3. Diberi nilai haba pendam tentu pengewapan air ialah 2.26 x 106 J kg-1. Bandingkan nilai haba pendam tentu pengewapan air yang diperoleh daripada eksperimen B dengan nila yang diberi. Bincangkan perbezaan antara dua nilai tersebut (jika ada).
- 4. Cadangkan langkah-langkah untuk meningkatkan kejituan keputusan eksperimen ini-

Perhatikan Rajah 4.18 yang menunjukkan proses perubahan fasa air apabila haba pendam diserap dan dibebaskan.

Semasa ais melebur, molekul ais menyerap haba pendam pelakuran menyebabkan perubahan fasa ais daripada pepejal kepada cecair.

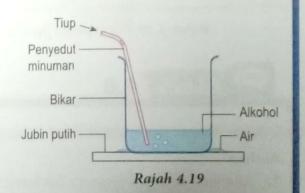
Semasa air mendidih, molekul air menyerap haba pendam pengewapan menyebabkan perubahan fasa air daripada cecair kepada gas.

Semasa wap air terkondensasi, molekul wap air membebaskan haba pendam pengewapan menyebabkan perubahan fasa wap air daripada gas kepada cecair.

Rajah 4.18 Proses perubahan fasa air

Penyerapan haba pendam semasa peleburan dan penyejatan boleh digunakan untuk memberi kesan penyejukan. Haba pendam yang dibebaskan semasa kondensasi pula boleh digunakan untuk tujuan pemanasan.

Aktiviti 4.7


Tujuan: Menunjukkan bahawa penyejatan menyebabkan penyejukan

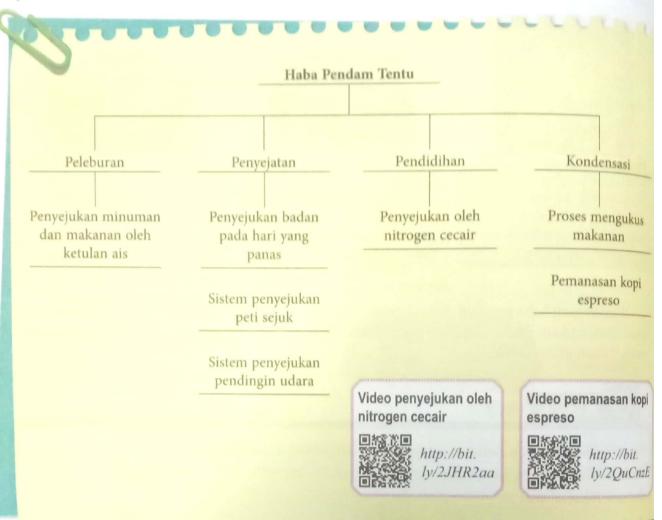
Radas: Bikar 250 ml, penyedut minuman dan jubin putih

Bahan: Alkohol dan air

Arahan:

- 1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.19.
- 2. Isi 100 ml alkohol ke dalam bikar.
- 3. Sentuh bahagian luar bikar dan air di sekeliling dasar bikar. Čatatkan pemerhatian anda.
- 4. Tiup udara berulang kali ke dalam alkohol.
- 5. Sentuh bahagian luar bikar. Catatkan pemerhatian anda.

Perbincangan:


- 1. Apakah yang berlaku kepada alkohol semasa udara ditiup ke dalamnya?
- 2. Bandingkan tahap kesejukan bikar sebelum dan selepas udara ditiup ke dalam alkohol. Terangkan jawapan anda.
- 3. Apakah kesan penyejatan cecair dalam aktiviti di atas?

Perubahan daripada fasa cecair kepada wap memerlukan haba pendam tentu pengewapan. Apabila suatu cecair tersejat, molekul cecair menyerap haba pendam tentu pengewapan untuk memutuskan ikatan antara molekul. Persekitaran cecair akan menjadi sejuk kerana haba telah diserap.

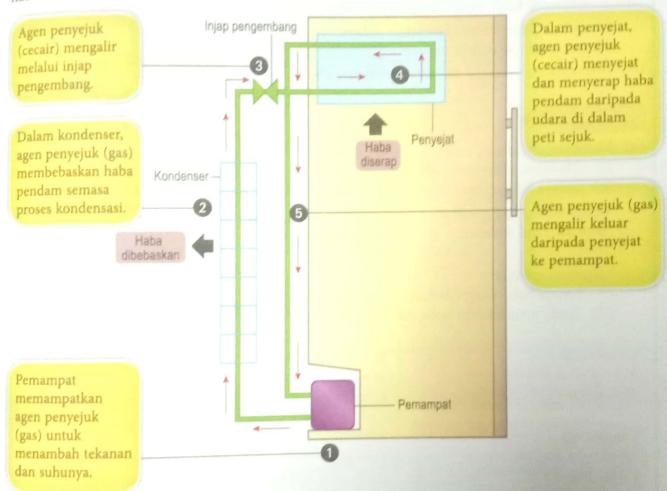
Rajah 4.20 menunjukkan empat proses perubahan fasa jirim yang melibatkan haba pendam tentu.

Rajah 4.20 Empat proses perubahan fasa jirim yang melibatkan haba pendam tentu

Tujuan: Membincangkan aplikasi haba pendam tentu dalam kehidupan harian Arahan:

Ardinam

- Jalankan aktiviti ini secara berkumpulan.
- Dapatkan maklumat mengenai aplikasi haba pendam tentu dalam kehidupan harian di bawah:
 - (a) Penyejatan peluh
 - (b) Pengukusan makanan
- 3. Maklumat tersebut boleh didapati daripada sumber bacaan atau carian di laman sesawang.
- 4. Kemudian, bincangkan bagaimana konsep haba pendam tentu diaplikasikan dalam setiap situasi di atas.
- 5. Persembahkan hasil perbincangan kumpulan anda dalam bentuk peta pemikiran.



Aplikasi Haba Pendam Tentu dalam Kehidupan Harian

Sistem penyejukan dalam peti sejuk

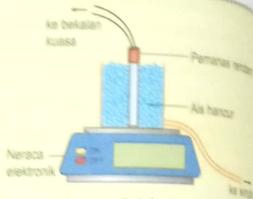
Peti sejuk menggunakan kesan penyejukan daripada penyejatan cecair. Semasa peredaran agen penyejuk dalam sistem penyejukan, haba diserap daripada bahagian dalam peti sejuk dan kemudian haba dibebaskan ke persekitaran luar.

Rajah 4.21 Sistem penyejukan dalam peti sejuk

Penyejatan peluh

Kita akan berpeluh pada hari yang panas atau semasa melakukan kerja yang berat. Apabila peluh itu tersejat, haba akan diserap daripada badan. Hal ini membawa kesan penyejukan kepada badan. Kadar penyejatan boleh meningkat dengan adanya aliran udara.

Basahkan tangan kanan anda. Letakkan tangan kanan yang basah dan tangan kiri yang kering di hadapan kipas meja. Apakah perbezaan yang boleh anda rasa pada tangan kanan dan tangan kiri?



Menyelesaikan Masalah yang Melibatkan Haba Pendam

Contoh 1

Rajah 4.22 menunjukkan sebuah pemanas rendam berkuasa 480 W digunakan untuk meleburkan ais di dalam sebuah bekas. Dalam masa 120 s. bacaan neraca elektronik berkurang sebanyak 0.172 kg.

- (a) Berapakah jisim ais yang melebur dalam tempoh pemanasan itu?
- (b) Hitungkan haba pendam tentu pelakuran ais, I,.

Rajah 4.22

Penyelesaian:

- (a) Membuat andaian:
 - (i) Ais dileburkan oleh haba daripada pemanas rendam sahaja.
 - (ii) Semua air daripada peleburan ais mengalir keluar daripada bekas itu.

Menghubung kait perubahan bacaan neraca elektronik kepada jisim ais yang melebur: Jisim air yang melebur = pengurangan bacaan neraca

$$m = 0.172 \text{ kg}$$

- (b) Membuat andaian:
 - (i) Semua haba yang dibekalkan oleh pemanas rendam diserap oleh ais yang melebur.
 - (ii) Tiada pemindahan haba daripada persekitaran ke dalam radas itu.

Senaraikan maklumat yang diberi dengan simbol.

$$m = 0.172 \text{ kg}$$

$$P = 480 \text{ W}$$

$$t = 120 \text{ s}$$

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

$$Pt = ml_i$$

Langkah @

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$480 \times 120 = 0.172 \times l_{i}$$

$$l_{i} = \frac{480 \times 120}{0.172}$$

$$= 3.35 \times 10^{5} \text{ J kg}^{-1}$$

Contoh 2

Berapakah kuantiti haba yang perlu dibekalkan oleh sebuah pemanas air elektrik kepada 0.75 kg air pada suhu 30°C untuk mengubah air tersebut menjadi stim pada suhu 100°C? Nyatakan andaian yang anda buat dalam pengiraan anda. [Muatan haba tentu air, $c_{\rm air} = 4.20 \times 10^3$ J kg⁻¹ °C⁻¹, haba pendam tentu pengewapan air, $l_{\rm v} = 2.26 \times 10^6$ J kg⁻¹]

Penyelesaian:

Membuat andaian:

- (i) Semua haba yang dibekalkan oleh pemanas itu diserap oleh air.
- (ii) Tiada kehilangan haba ke persekitaran semasa pemanasan air dan perubahan fasa air.

Perubahan yang dikehendaki terdiri daripada dua peringkat, iaitu:

- (i) memanaskan air pada suhu 30°C sehingga mencapai takat didih 100°C, dan
- (ii) mengubah air pada suhu 100°C kepada stim tanpa perubahan suhu.

Kuantiti haba yang diperlukan,

$$Q = Q_1 + Q_2$$
= $mc\Delta\theta + ml$
= $[0.75 \times 4.2 \times 10^3 \times (100 - 30)] + (0.75 \times 2.26 \times 10^6)$
= 1.92×10^6 J

Latihan Formatif

- 4.3
- 1. Rajah 4.23 menunjukkan sebuah pengukus elektrik. Terangkan bagaimana ikan itu dipanaskan.
- 2. Berapakah kuantiti haba yang perlu dibebaskan daripada 0.8 kg air pada suhu 25°C untuk menyejukkan air itu sehingga menjadi ais pada suhu −6°C? Nyatakan andaian yang anda buat dalam pengiraan anda.

[Muatan haba tentu air, $c_{\rm air} = 4.2 \times 10^3 \, \rm J \, kg^{-1} \, ^{\circ}C^{-1}$, muatan haba tentu ais, $c_{\rm ais} = 2.0 \times 10^3 \, \rm J \, kg^{-1} \, ^{\circ}C^{-1}$ dan haba pendam tentu pelakuran ais, $l_{\rm f} = 3.34 \times 10^5 \, \rm J \, kg^{-1}$]

Rajah 4.23

4.4 Hukum Gas

Tekanan, Suhu dan Isi Padu Gas

Gambar foto 4.3 menunjukkan satu plastik udara kembung yang digunakan dalam pembungkusan barangan. Apabila plastik tersebut dimampatkan, udara yang mengisi plastik tersebut memberikan suatu tentangan. Pemerhatian itu boleh dijelaskan dari segi kelakuan molekul berdasarkan Teori Kinetik Gas.

> Gambar foto 4.3 Plastik udan kembung dimampatkan

Aktiviti 4.9

Tujuan: Memerhatikan kelakuan molekul gas melalui simulasi komputer

- 1. Jalankan aktiviti ini dalam bentuk Think-Pair-Share.
- 2. Layari laman sesawang yang diberi untuk melihat simulasi mengenai kelakuan molekul gas. Berdasarkan simulasi tersebut, bincangkan perkara berikut:
 - (a) Pergerakan molekul gas
 - (b) Ruang yang diisi oleh molekul gas
 - (c) Arah pergerakan molekul
 - (d) Perlanggaran antara molekul gas dengan dinding bekas
 - (e) Kesan pertambahan dan pengurangan tekanan, suhu dan isi padu gas terhadap kelakuan molekul gas
- Persembahkan hasil dapatan anda.

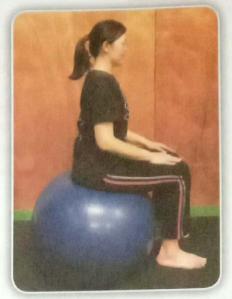
Simulasi kelakuan molekul gas

https://bit. lv/2CSb2zq

Jadual 4.8 menerangkan tekanan, suhu dan isi padu gas di dalam sebuah bekas tertutup berdasarkan Teori Kinetik Gas.

Jadual 4.8 Tekanan, suhu dan isi padu gas berdasarkan Teori Kinetik Gas

Ciri gas	Huraian		
Tekanan	 Molekul gas sentiasa bergerak secara rawak. Apabila molekul gas berlanggar dengan dinding bekas dan melantun balik, day dikenakan ke atas dinding bekas itu. Daya per unit luas ialah tekanan gas itu. 		
Suhu	Tenaga kinetik purata molekul meningkat dengan suhu gas.		
Isi padu	 Molekul gas bebas bergerak dan memenuhi seluruh ruang bekas itu. Isi padu gas sama dengan isi padu bekasnya. 		



Jadual 4.9 Unit S.I. dan unit lain bagi tekanan, suhu dan isi padu gas

Kuantiti	Unit S.I.	Simbol bagi unit S.I.	Unit lain
Tekanan, P	pascal	Pa	cm Hg
Suhu, T	kelvin	K	°C, °F
Isi padu, V	(meter) ³	m³	mm³, cm³, ml

Hubungan antara Tekanan dengan Isi Padu bagi Suatu Gas

Gambar foto 4.4 menunjukkan sebuah bola senaman yang termampat apabila seseorang duduk di atasnya. Apakah yang berlaku kepada tekanan udara di dalam bola itu?

Gambar foto 4.4 Bola senaman dimampatkan

4.4

Inferens: Isi padu suatu gas mempengaruhi tekanan gas

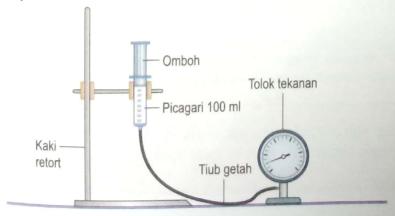
Hipotesis: Semakin kecil isi padu gas, semakin tinggi tekanan gas

Tujuan: Menentukan hubungan antara isi padu dengan tekanan bagi suatu gas berjisim

tetap pada suhu malar

Pemboleh ubah:

(a) Dimanipulasikan: Isi padu, \it{V}


(b) Bergerak balas: Tekanan, P

(c) Dimalarkan: Suhu dan jisim udara

Radas: Picagari 100 ml, tiub getah, tolok tekanan dan kaki retort

Prosedur:

 Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.24.

Rajah 4.24

- 2. Laraskan omboh supaya isi padu udara di dalam picagari ialah 100 ml. Kemudian, sambungkan hujung picagari kepada tolok tekanan.
- 3. Ambil bacaan isi padu dan tekanan awal bagi udara di dalam picagari. Rekodkan bacaan dalam Jadual 4.10.
- 4. Tolak omboh dengan perlahan sehingga isi padu udara di dalam picagari menjadi 90 ml. Ambil bacaan tekanan udara itu dan rekodkan bacaan dalam jadual.
- 5. Ulangi langkah 4 dengan isi padu 80 ml, 70 ml dan 60 ml.
- 6. Rekodkan semua bacaan tekanan, P dalam jadual.

Keputusan:

Iadual 4.10

Isi padu, V / ml	Tekanan, P / kPa	$\frac{1}{V}$ / m -1
60		
70		
80		
90		
100		

Analisis data:

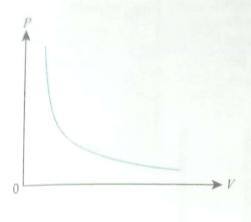
Plotkan graf tekanan, P melawan isi padu, V dan graf P melawan $\frac{1}{V}$.

Kesimpulan:

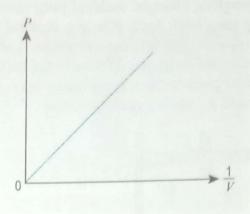
Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:


- 1. Mengapakah picagari dengan isi padu yang lebih besar digunakan?
- 2. Mengapakah omboh itu ditolak dengan perlahan ke dalam picagari?

Eksperimen 4.4 menunjukkan bahawa tekanan gas bertambah apabila isi padu gas it dikurangkan. Apakah hubungan antara tekanan dengan isi padu suatu gas pada suhu malar?



Berdasarkan Eksperimen 4.4, hubungan antara tekanan dengan isi padu bagi suatu gas boleh dilihat melalui graf-graf dalam Rajah 4.25.

(a) Graf P melawan V

(b) Graf P melawan $\frac{1}{V}$

Rajah 4.25 Hubungan antara tekanan dengan isi padu gas

Graf P melawan V menunjukkan bahawa tekanan berkurang dengan isi padu. Graf P melawan $\frac{1}{V}$ pula menunjukkan satu garis lurus yang melalui titik asalan. Hal ini membuktikan bahawa tekanan berkadar songsang dengan isi padu.

Hukum Boyle menyatakan bahawa tekanan berkadar songsang dengan isi padu bagi suatu gas berjisim tetap pada suhu malar.

$$P \propto \frac{1}{V}$$

$$P = k(\frac{1}{V})$$
iaitu k ialah suatu pemalar
$$P = \text{tekanan gas (Pa)}$$

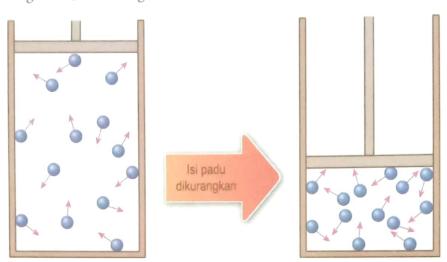
$$V = \text{isi padu gas (m}^3)$$
Dengan itu, $PV = k$

Katakan suatu gas mengalami perubahan tekanan dan isi padu daripada keadaan 1 kepada keadaan 2.

Daripada
$$PV = k$$
, keadaan awal gas, $P_1V_1 = k$ keadaan akhir gas, $P_2V_2 = k$

Maka, $P_1V_1 = P_2V_2$

Robert Boyle (1627–1691)
merupakan seorang saintis
yang menekankan kaedah
saintifik semasa melakukan
penyiasatan. Melalui data
eksperimen, beliau membuat
kesimpulan bahawa isi padu
suatu gas berkadar songsang
dengan tekanan gas itu.



https://bit. ly/2LghIw8

EduwebTV: Hukum Boyle

http://bit. ly/2Mt0M6J Rajah 4.26 menunjukkan suatu gas berjisim tetap dimampatkan pada suhu malar. Apabila isi padu gas itu dikurangkan, bilangan molekul yang sama bergerak dalam ruang yang lebih kecil. Bilangan molekul per unit isi padu bertambah. Hal ini menyebabkan kadar perlanggaran antara molekul dengan dinding bekas bertambah. Daya per unit luas pada permukaan dinding bekas turut bertambah. Dengan itu, tekanan gas bertambah.

Segi tiga PVT:

P
V
T

Untuk Hukum Boyle, suhu adalah malar.

P
V

PV = pemalar

P₁V₁ = P₂V₂

Rajah 4.26 Suatu gas berjisim tetap dimampatkan pada suhu malar

Contoh 1

Udara di dalam sebuah picagari tertutup mempunyai isi padu 60 cm³ dan tekanan 108 kPa. Omboh picagari itu ditolak untuk memampatkan udara itu sehingga isi padu 48 cm³. Hitungkan tekanan udara termampat itu.

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan. $\begin{cases} P_1 = 108 \text{ kPa} \\ P_2 = \text{tekanan udara termampat} \\ V_1 = 60 \text{ cm}^3 \\ V_2 = 48 \text{ cm}^3 \end{cases}$

Suhu gas tidak berubah. Rumus Hukum Boyle digunakan. $P_1V_1 = P_2V_2$

$$108 \times 60 = P_2 \times 48$$

$$P_2 = \frac{108 \times 60}{48}$$

$$= 135 \text{ kPa}$$

Hubungan antara Isi Padu dengan Suhu bagi Suatu Gas

Gambar foto 4.5 menunjukkan sebuah botol plastik berisi udara di dalam peti sejuk. Apakah yang berlaku kepada isi padu udara di dalam botol itu?

(a) Botol plastik sebelum disejukkan

(b) Botol plastik selepas disejukkan

Gambar foto 4.5 Keadaan botol plastik di dalam peti sejuk sebelum dan selepas disejukkan

4.5 .

Inferens: Suhu suatu gas mempengaruhi isi padu gas

Hipotesis: Semakin tinggi suhu, semakin besar isi padu gas

Tujuan: Menentukan hubungan antara suhu dengan isi padu bagi suatu gas berjisim tetap pada tekanan malar

Pemboleh ubah:

(a) Dimanipulasikan: Suhu, θ

(b) Bergerak balas: Isi padu, V yang diwakili oleh panjang turus udara, L di dalam tiub kapilari


(c) Dimalarkan: Tekanan dan jisim udara

Radas: Tiub kapilari yang mengandungi udara terperangkap oleh satu turus asid sulfurik pekat, bikar 500 ml, termometer, pembaris, penunu Bunsen, tungku kaki tiga, kasa dawai, pengacau dan kaki retort

Bahan: Air, ais dan gelang getah

Prosedur:

1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.27.

Rajah 4.27

- Panaskan air dengan perlahan dan kacau air itu secara berterusan sehingga suhu air itu mencapai 30°C.
- Ambil bacaan panjang turus udara, L dalam tiub kapilari itu. Rekodkan bacaan dalam Jadual 4.11.
- Ulangi langkah 2 dan 3 dengan suhu 40°C, 50°C, 60°C, 70°C dan 80°C.
- Rekodkan semua bacaan panjang turus udara, L dalam Jadual 4.11.

Keputusan:

Jadual 4.11

Suhu, θ / °C	Panjang turus udara, L / cm
30	
40	
50	
60	
70	
80	

Analisis data:

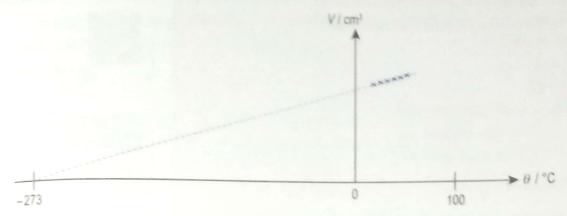
- 1. Plotkan graf panjang turus udara, L melawan suhu, θ . Paksi- θ hendaklah meliputi julat 0°C hingga 100°C.
- 2. Ekstrapolasi graf L melawan θ sehingga θ = 0°C.
- Plotkan semula graf L melawan θ dengan paksi-θ meliputi julat -300°C hingga 100°C.
- 4. Ekstrapolasi graf L melawan θ sehingga L=0 cm.

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:


- Mengapakah air perlu sentiasa dikacau semasa dipanaskan?
- Apakah andaian yang perlu dibuat supaya panjang turus udara yang terperangkap di dalam tiub kapilari boleh mewakili isi padu udara tersebut?

[Petunjuk: Isi padu turus udara, F = panjang turus udara, $L \times \text{luas keratan rentas tiub kapilari}$, A]

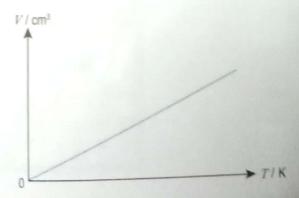
Isi padu gas bertambah apabila suhu gas itu dinaikkan. Pada suhu 0°C, udara yan terperangkap di dalam tiub kapilari masih mempunyai suatu isi padu yang tertentu. Hal it menunjukkan bahawa pada suhu 0°C, molekul gas masih bergerak dan memenuhi ruang bekas

Rajah 4.28 menunjukkan graf V melawan θ yang diekstrapolasi sehingga V = 0 cm³.

Rajah 4.28 Ekstrapolasi graf V melawan θ

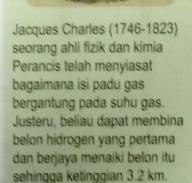
Pada suhu -273°C, molekul-molekul gas tidak lagi bergerak dan tidak dapat memenuhi ruang. Oleh itu, isi padu gas menjadi sifar. Suhu -273°C ialah suhu paling rendah yang mungkin dan dikenali sebagai sifar mutlak. Pada skala kelvin, sifar mutlak diberi nilai 0 kelvin atau 0 K. Suhu yang dinyatakan dengan unit kelvin ialah suhu mutlak.

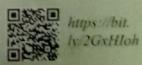
Jadual 4.12 Suhu dalam unit darjah Celsius, °C dan kelvin, K bagi tiga takat suhu


Takat suhu	Suhu, θ / °C	Suhu, T/K
Sifar mutlak	-273	0
Ais lebur	0	273
Stim	100	373

Penukaran unit antara darjah Celsius, °C dengan kelvin, K boleh dilakukan melalui persamaan yang berikut:

$$T = \theta + 273$$


untuk 0°C dan T K


Rajah 4.29 menunjukkan graf V melawan T.

Rajah 4.29 Graf V melawan T bagi suatu gas

SEJARAH SEJARAH

Graf V melawan T bagi suatu gas menunjukkan satu garis lurus yang melalui titik asalan. Hal ini menunjukkan bahawa isi padu gas berkadar terus dengan suhu mutlak.

Hukum Charles menyatakan bahawa isi padu adalah berkadar terus dengan suhu mutlak bagi suatu gas berjisim tetap pada tekanan malar.

$$V \propto T$$

$$V = kT$$

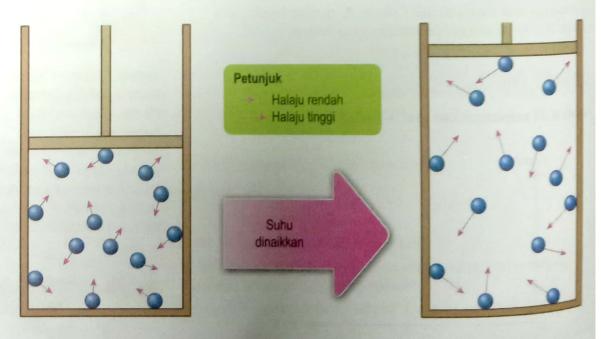
iaitu k ialah suatu pemalar

T = suhu mutlak (K)

V = isi padu gas (m³)

Dengan itu,
$$\frac{V}{T} = k$$

Katakan suatu gas mengalami perubahan isi padu dan suhu daripada keadaan 1 kepada keadaan 2.


Daripada
$$\frac{V}{T} = k$$
, keadaan awal gas: $\frac{V_1}{T_1} = k$

keadaan akhir gas:
$$\frac{V_2}{T_2} = k$$

Maka,
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Rajah 4.30 menunjukkan suatu gas berjisim tetap dipanaskan pada tekanan malar. Apa suhu gas itu dinaikkan, tenaga kinetik purata molekul bertambah, iaitu molekul-molekul bergan halaju yang lebih tinggi. Untuk mengekalkan tekanan gas yang malar, isi padu gas itu i bertambah supaya kadar perlanggaran molekul gas dengan dinding bekas tidak berubah.

Rajah 4.30 Suatu gas berjisim tetap dipanaskan pada tekanan malar

Contoh 1

Satu gelembung udara mempunyai isi padu 1.2 cm³ pada suhu 27°C. Berapakah isi padu gelembung udara itu jika suhunya meningkat kepada 47°C?

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$V_1 = 1.20 \text{ cm}^3$$

 V_2 = Isi padu akhir udara

$$T_1 = (27 + 273) = 300 \text{ K}$$

$$T_2 = (47 + 273) = 320 \text{ K}$$

Tekanan gas itu malar.

Rumus Hukum Charles digunakan.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{1.2}{300} = \frac{V_2}{320}$$

$$V_2 = \frac{1.2 \times 320}{300}$$

 $= 1.28 \text{ cm}^3$

Hubungan antara Tekanan dengan Suhu bagi Suatu Gas

Gambar foto 4.6 menunjukkan tekanan udara di dalam tayar sebuah kereta diukur pada suatu hari yang panas. Pemandu kereta menyentuh tayar selepas perjalanan dan mendapati tayar itu lebih panas daripada sebelum perjalanan. Gambar foto 4.7 pula menunjukkan bacaan tolok tekanan pada sebelum dan selepas perjalanan. Apakah yang berlaku kepada tekanan udara di dalam tayar tersebut?

Gambar foto 4.6 Tekanan udara tayar kereta diukur

(a) Sebelum perjalanan

(b) Selepas perjalanan

Gambar foto 4.7 Bacaan tolok tekanan

Inferens: Suhu suatu gas mempengaruhi tekanan gas

Hipotesis: Semakin tinggi suhu, semakin tinggi tekanan gas

Tujuan: Menentukan hubungan antara suhu dengan tekanan bagi suatu gas berjisim tetap

pada isi padu malar

Pemboleh ubah:

(a) Dimanipulasikan: Suhu, θ (b) Bergerak balas: Tekanan, P

(c) Dimalarkan: Isi padu dan jisim udara

Radas: Kelalang dasar bulat, bikar besar, termometer, tolok tekanan, penunu Bunsen, tungku kaki tiga, pengacau dan kaki retort

Bahan: Air dan ais

Prosedur:

1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 4.31.

Rajah 4.31

- Panaskan air dengan perlahan dan kacau air itu secara berterusan sehingga suhu air itu mencapai 30°C.
- 3. Ambil bacaan tekanan udara, *P* di dalam kelalang itu. Rekodkan bacaan dalam Jadual 4.13.
- 4. Ulangi langkah 2 dan 3 dengan suhu 40°C, 50°C, 60°C, 70°C dan 80°C.
- 5. Rekodkan semua bacaan tekanan udara, P dalam Jadual 4.13.

4.4.4

Keputusan:

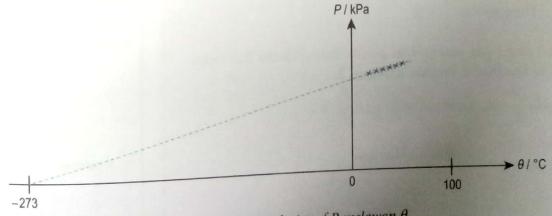
Jadual 4.13

Suhu, θ / °C	Tekanan udara, P / kPa
30	
40	
50	
60	
70	
80	

Analisis data:

- 1. Plotkan graf tekanan, P melawan suhu, θ . Paksi- θ hendaklah meliputi julat –300°C hingga 100°C.
- 2. Ekstrapolasi graf itu sehingga P=0 kPa. Tentukan nilai suhu apabila tekanan, P=0 kPa.

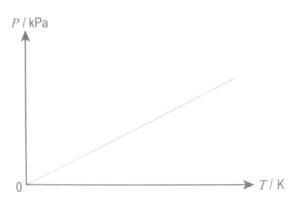
Kesimpulan:


Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- 1. Apakah kelebihan menggunakan kelalang dasar bulat untuk pemanasan udara?
- 2. Termometer direndam di dalam bikar besar berisi air. Apakah andaian yang perlu dibuat supaya bacaan termometer ialah suhu udara di dalam kelalang dasar bulat?


Eksperimen 4.6 menunjukkan bahawa tekanan gas bertambah apabila suhu gas itu dinaikkan. Rajah 4.32 menunjukkan graf P melawan θ yang diekstrapolasi sehingga P = 0 kPa.

Rajah 4.32 Ekstrapolasi graf P melawan θ

Graf P melawan θ menunjukkan bahawa tekanan gas bertambah secara linear apabila suhu gas itu dinaikkan. Pada suhu 0 °C, molekul gas masih bergerak dan gas itu mempunyai tekanan. Pada suhu -273 °C, iaitu sifar mutlak, molekul gas tidak lagi bergerak dan tidak berlanggar dengan dinding bekas. Tekanan gas itu menjadi sifar. Rajah 4.33 menunjukkan graf P melawan T.

Rajah 4.33 Graf P melawan T

Graf P melawan T bagi suatu gas ialah satu garis lurus yang melalui titik asalan. Hal ini menunjukkan bahawa tekanan gas berkadar terus dengan suhu mutlak.

Hukum Gay-Lussac menyatakan bahawa tekanan adalah berkadar terus dengan suhu mutlak bagi suatu gas berjisim tetap pada isi padu malar.

$$P \propto T$$
$$P = kT$$

iaitu k ialah suatu pemalar

P = tekanan (Pa)

T = suhu mutlak (K)

Dengan itu, $\frac{P}{T} = k$

Katakan suatu gas mengalami perubahan tekanan dan suhu daripada keadaan 1 kepada keadaan 2.

Daripada
$$\frac{P}{T} = k$$
, keadaan awal gas: $\frac{P_1}{T_1} = k$

keadaan akhir gas: $\frac{P_2}{T_2} = k$

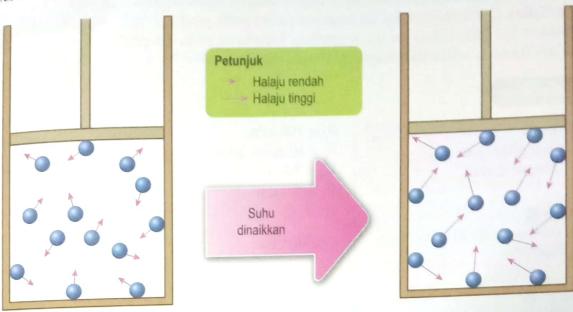
Maka, $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

Joseph Louis Gay-Lussac (1778–1850) seorang ahli fizik dan kimia Perancis yang membuat pengajian kuantitati tentang ciri-ciri gas. Beliau juga menyiasat medan magnet Bum dan komposisi atmosfera pada altitud tinggi. Selain itu, beliau menemui dua unsur baharu, iaitu boron dan iodin.

https://bit. ly/2Lsd1zR

Hukum Gay-Lussac

https://bit. ly/2R8lRbc



Untuk Hukum Gay-Lussac, isi padu adalah malar.

$$\frac{P}{T}$$
 = pemalar $\frac{P_1}{T} = \frac{P_2}{T}$

Rajah 4.34 menunjukkan suatu gas berjisim tetap dipanaskan pada isi padu malar. Apabila suhu gas itu dinaikkan, tenaga kinetik purata molekul bertambah, iaitu molekul-molekul bergerak suhu gas halaju yang lebih tinggi. Oleh sebab isi padu gas tidak berubah, kadar perlanggaran dengan dinding beksa berta dan gas tidak berubah, kadar perlanggaran dengan dinding bekas bertambah. Daya per unit luas pada permukaan dinding bekas molekus bertambah. Dengan itu, tekanan gas itu bertambah.

Rajah 4.34 Suatu gas berjisim tetap dipanaskan pada isi padu malar

Contoh 1

Gas di dalam sebuah silinder keluli tertutup mempunyai tekanan 180 kPa pada suhu 25°C. Berapakah tekanan gas itu apabila silinder dipanaskan sehingga suhu 52°C?

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$P_1 = 180 \text{ kPa}$$

 $P_2 = \text{Tekanan akhir gas}$
 $T_1 = (25 + 273) = 298 \text{ K}$
 $T_2 = (52 + 273) = 325 \text{ K}$
Isi padu gas itu malar.

Rumus Hukum Gay-Lussac digunakan.

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{180}{298} = \frac{P_2}{325}$$

$$P_2 = \frac{180 \times 325}{298}$$

$$= 196.3 \text{ kPa}$$

Menyelesaikan Masalah Melibatkan Tekanan, Suhu dan Isi Padu Suatu Gas Berjisia Tetap dengan Menggunakan Rumus dari Hukum-hukum Gas

Contoh L

Gambar foto 4.8 menunjukkan sebuah picagari dengan muncungnya ditutup. Udara di dalam picagari itu mempunyai isi padu awal 7.5 cm³ dan tekanan 105 kPa. Udara itu dimampatkan kepada isi padu 2.5 cm³. Berapakah tekanan udara termampat di dalam picagari itu?

Gambar foto 4.8

Penyelesaian:

Langkah

Senaraikan maklumat yang diberi dengan simbol.

Langkah 2

Kenal pasti dan tulis rumus yang digunakan.

Langkah 🕙

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

$$\begin{cases}
P_1 = 105 \text{ kPa} \\
P_2 = \text{tekanan udara termampat} \\
V_1 = 7.5 \text{ cm}^3 \\
V_2 = 2.5 \text{ cm}^3
\end{cases}$$

$$P_{_{1}}V_{_{1}}=P_{_{2}}V_{_{2}}$$

$$105 \times 7.5 = P_2 \times 2.5$$

$$P_2 = \frac{105 \times 7.5}{2.5}$$
= 315 kPa

Contoh 2

Udara dengan isi padu 0.24 m³ di dalam sebuah silinder yang boleh mengembang dipanaskan daripada suhu 27°C kepada 77°C pada tekanan malar. Berapakah isi padu udara itu pada suhu 77°C?

Penyelesaian:

$$V_1 = 0.24 \text{ m}^3$$

$$V_2$$
 = Isi padu akhir udara

$$T_1 = (27 + 273)$$

$$= 300 \text{ K}$$

$$T_2 = (77 + 273)$$

$$= 350 K$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{0.24}{300} = \frac{V_2}{350}$$

$$V_2 = \frac{0.24 \times 350}{300}$$

$$= 0.28 \text{ m}^3$$

contoh 3

Tekanan dan suhu awal bagi udara di dalam tayar sebuah kereta masing-masing ialah 210 kPa dan 25°C. Selepas suatu perjalanan, tekanan udara di dalam tayar itu ialah 240 kPa. Hitungkan suhu udara di dalam tayar itu dalam °C.

Penyelesaian:

Anggap isi padu tayar tidak berubah. Hukum Gay-Lussac digunakan.

$$P_1 = 210 \text{ kPa}$$

$$P_2 = 240 \text{ kPa}$$

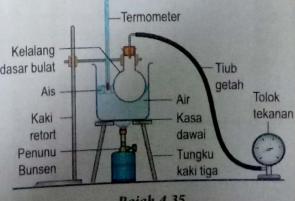
$$T_1 = 25^{\circ}\text{C} + 273$$

= 298 K

$$T_{i} =$$
Suhu akhir udara

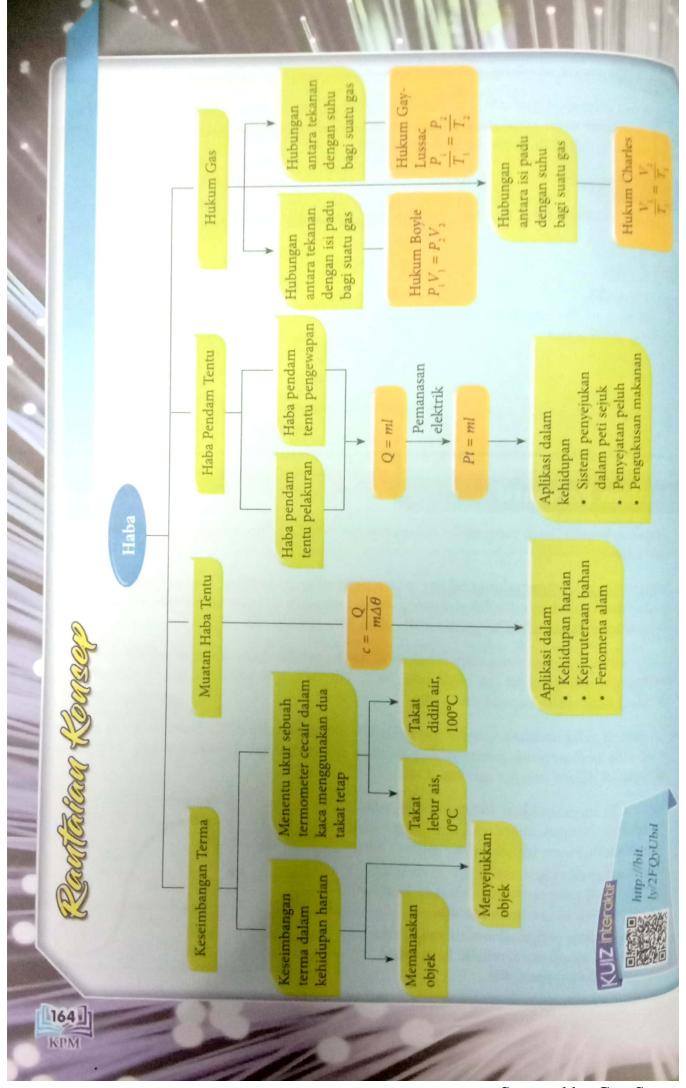
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{210}{298} = \frac{240}{T_0}$$


$$T_2 = \frac{240 \times 298}{210}$$

Suhu akhir udara =
$$340.6 - 273$$

= 67.6° C


Latihan Formatif

4.4

- 1. Nyatakan kuantiti fizik yang malar dalam hukum Boyle, hukum Charles dan hukum Gay-Lussac.
- 2. Sebuah picagari mengandungi 50 cm³ udara pada tekanan 110 kPa. Hujung picagari itu ditutup dan ombohnya ditolak dengan perlahan sehingga isi padu udara menjadi 20 cm³. Berapakah tekanan udara termampat di dalam picagari itu? 🦇
- 3. Satu gelembung udara yang terperangkap di bawah sehelai daun di dalam sebuah tasik mempunyai isi padu 1.60 cm³ pada suhu 38°C. Hitungkan isi padu gelembung jika suhu air di dalam tasik turun kepada 26°C. 🦇
- 4. Tekanan di dalam sebuah silinder gas ialah 175 kPa pada suhu 27°C. Haba daripada sebuah relau yang berhampiran menyebabkan tekanan gas bertambah kepada 300 kPa. Berapakah suhu gas di dalam silinder itu?
- 5. Rajah 4.35 menunjukkan susunan radas untuk mengkaji hubungan antara tekanan dengan suhu bagi udara di dalam sebuah kelalang dasar bulat. dasar bulat
 - (a) Kenal pasti empat aspek dalam susunan radas ini yang boleh menjejaskan kejituan keputusan eksperimen ini. 🧠
 - (b) Cadangkan pengubahsuaian yang perlu dilakukan untuk membaiki kelemahan yang dikenal pasti. 🥮

Rajah 4.35

Scanned by CamScanner

1. Perkara baharu yang saya pelajari dalam bab haba ialah

2. Perkara paling menarik yang saya pelajari dalam bab haba ialah

3. Perkara yang saya masih kurang fahami atau kuasai ialah

4. Prestasi anda dalam bab ini.

Kurang

baik

Sangat

untuk meningkatkan prestasi saya 5. Saya perlu dalam bab ini.

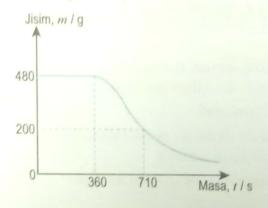
Muat turun dan cetak Refleksi Kendiri Bab 4

http://bit. ly/2QNfBBp

baik

Penilaian Prestasi

- 1. Gambar foto 1 menunjukkan sebuah mesin penyuntik stim yang boleh menyalurkan stim ke dalam air di dalam gelas.
 - (a) Apakah maksud haba pendam?
 - (b) Terangkan bagaimana air di dalam gelas dipanaskan oleh stim yang disuntik ke dalamnya.
 - (c) Apakah kelebihan pemanasan air melalui kaedah suntikan stim?



Gambar foto 1

2. Tandakan (✓) bagi situasi yang menunjukkan keseimbangan terma.

Situasi	Tandakan (✓)
(a) Satu objek panas dan satu objek sejuk diletakkan bersebelahan.	
(b) Satu objek dipanaskan oleh sumber api berhampiran.	
(c) Dua objek pada suhu yang sama dan bersentuhan supaya haba dapat dipindahkan antara satu sama lain tetapi tiada pemindahan haba bersih berlaku.	
(d) Dua objek pada suhu yang sama tetapi dipisahkan oleh satu penghalang haba.	

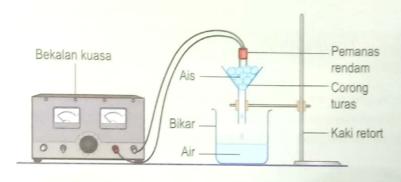
- 3. Bongkah A mempunyai nilai muatan haba tentu yang tinggi dan bongkah B mempunyai nilai muatan haba tentu yang rendah. Jika kedua-dua bongkah mempunyai jisim yang sama
 - (a) bongkah yang manakah memerlukan lebih banyak tenaga untuk kenaikan suhu sebanyak 10°C?
 - (b) bongkah yang manakah lebih cepat menjadi panas sekiranya dibekalkan dengan haba yang sama? Terangkan jawapan anda.
- 4. (a) Definisikan haba pendam tentu.
 - (b) Jisim seketul ais yang sedang melebur berkurang sebanyak 0.68 kg. Berapakah kuantiti haba yang telah diserap daripada persekitaran oleh ketulan ais itu? ← [Haba pendam tentu pelakuran ais = 3.34 × 10⁵ J kg⁻¹]
- 5. (a) Apakah maksud haba pendam tentu pengewapan?
 - (b) Rajah 1 menunjukkan graf jisim air, m melawan masa, t apabila air di dalam sebuah bikar dipanaskan oleh pemanas elektrik dengan kuasa 1 800 W. Pada masa, t = 360 s, air itu mula mendidih. Hitungkan:

Rajah 1

- (i) jisim air yang mendidih menjadi stim dari t = 360 s hingga t = 710 s.
- (ii) haba pendam tentu pengewapan air.
- 6. Sebentuk cincin emas berjisim 5.5 g mengalami peningkatan suhu dari 36°C hingga 39°C. Berapakah tenaga haba yang telah diserap oleh cincin tersebut?

 [Diberi nilai muatan haba tentu emas ialah 300 J kg⁻¹ °C⁻¹]
- Gambar foto 2 menunjukkan label kuasa bagi sebuah cerek elektrik.
 - (a) Berapakah kuasa maksimum cerek elektrik itu?
 - (b) Hitungkan masa yang diambil oleh cerek itu untuk mengubah 0.5 kg air yang mendidih pada suhu 100°C kepada stim pada suhu 100°C apabila cerek tersebut beroperasi pada kuasa maksimum.

[Haba pendam tentu pengewapan air = 2.26×10^6 J kg⁻¹]


(c) Apakah andajan yang dibuat dalam perhitungan anda di 7(b)?

Gambar foto 2

- 8. Udara di dalam tayar sebuah kereta lumba mempunyai tekanan 220 kPa pada suhu awal 27°C. Selepas suatu perlumbaan, suhu udara itu meningkat kepada 87°C.
 - (a) Hitungkan tekanan udara di dalam tayar selepas perlumbaan.
 - (b) Apakah andaian yang anda buat di 8(a)?
- 9. Satu gelembung udara terperangkap di bawah sehelai daun yang terapung di permukaan air sebuah tasik. Isi padu gelembung udara ialah 3.6 cm³ apabila suhu ialah 20°C.
 - (a) Berapakah isi padu udara yang terperangkap apabila suhu air telah meningkat kepada 38°C?
 - (b) Nyatakan tiga andaian yang perlu dibuat dalam penghitungan di 9(a). 🧼
- 10. Rajah 2 menunjukkan ketulan ais sedang dipanaskan oleh pemanas rendam 500 W selama 80 saat. Ketulan ais yang melebur dikumpulkan di dalam sebuah bikar. [Haba pendam tentu pelakuran ais ialah 3.34×10^5 J kg⁻¹]

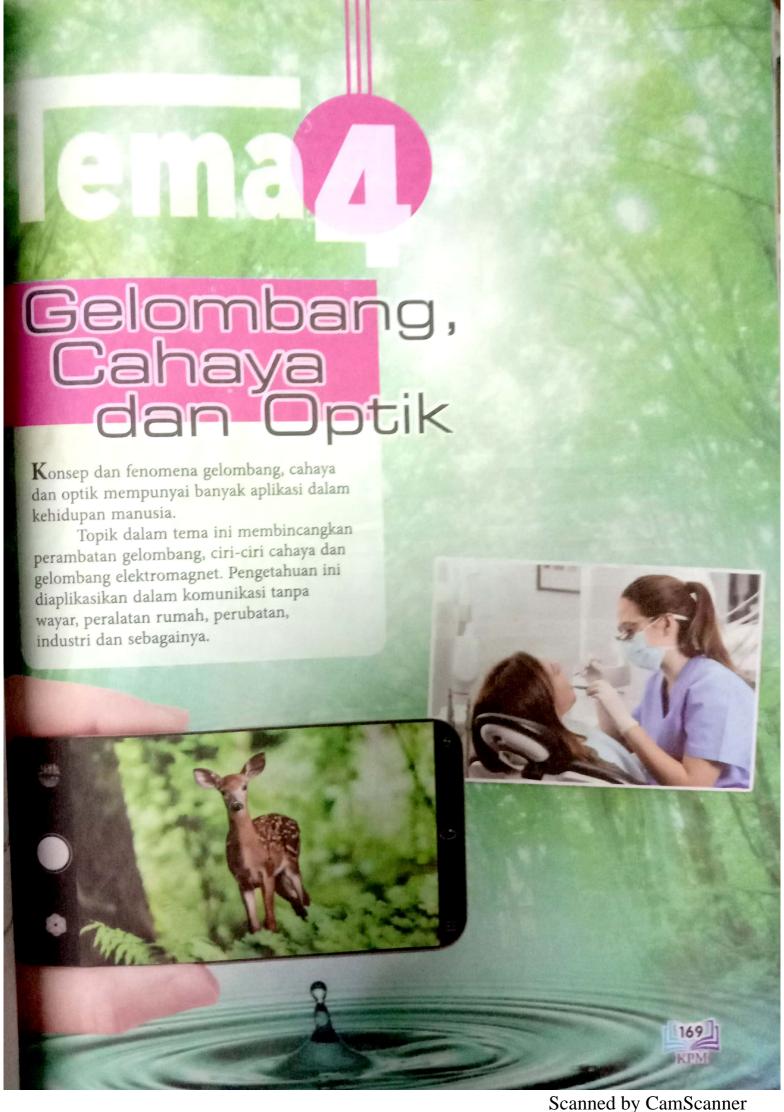
Rajah 2

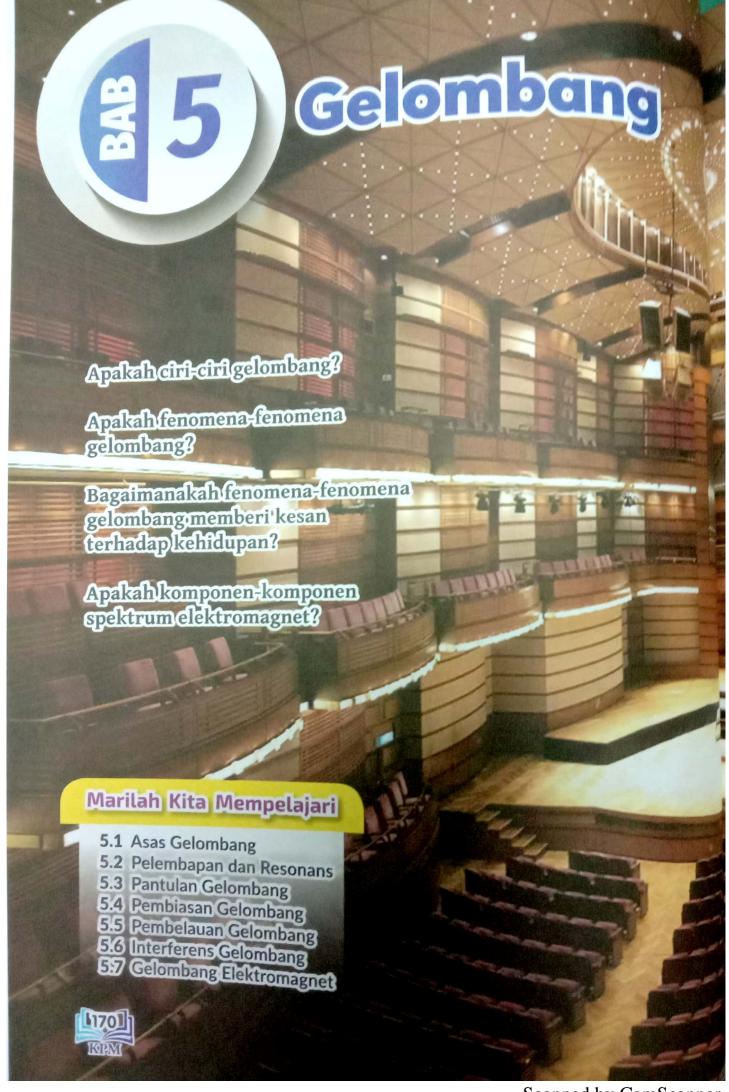
- (a) Apakah yang dimaksudkan dengan haba pendam tentu pelakuran?
- (b) Mengapakah suhu tidak berubah apabila ketulan ais berubah menjadi cecair?
- (c) Hitungkan:
 - (i) tenaga yang diserap oleh ketulan ais.
 - (ii) jisim ketulan ais yang sudah melebur.
- (d) Apakah andaian yang dibuat dalam penghitungan anda di 10(c)?
- 11. Sebuah cerek elektrik diisi dengan 500 g air pada suhu 30°C. Kuasa elemen pemanas cerek ialah 0.8 kW. Anggap bahawa semua haba dari elemen pemanas dipindahkan ke air. [Diberi nilai muatan haba tentu air ialah 4 200 J kg⁻¹ °C⁻¹.]
 - (a) Hitungkan: 🦱
 - (i) tenaga haba yang diperlukan untuk menaikkan suhu air kepada 100°C.
 - (ii) masa yang diambil oleh cerek untuk memanaskan air kepada suhu 100°C.
 - (b) Mengapakah pemegang cerek diperbuat daripada plastik?
 - (c) Mengapakah elemen pemanas cerek diperbuat daripada logam? 🦱
 - (d) Elemen pemanas cerek diletakkan di dasar cerek. Terangkan sebab. 🧆

- Satu bahan mempunyai jisim 250 g. Bahan tersebut kehilangan 5 625 J haba apabas disejukkan sehingga mencapai penurunan suhu sebanyak 25°C.
 - (a) Hitungkan muatan haba tentu bahan tersebut. Kenal pasti bahan tersebut berdasan Jadual 4.2 yang telah dilengkapkan di halaman 128.
 - (b) Jelaskan kegunaan bahan tersebut berdasarkan muatan haba tentunya. 🦡
- 13. Gambar foto 3 menunjukkan sebuah bekas pengukus. Amin mendapat permintaan daripada sebuah pasar raya untuk membekalkan 400 biji pau pada setiap hari. Cadang dan terangkan reka bentuk bekas pengukus yang diperlukan oleh Amin dari segi ketahanan dan keupayaan mengukus pau dalam jumlah yang banyak dalam masa yang singkat.

Gambar Jose 3

Sudut Pengayaan


14. Khairi memesan secawan air kopi susu panas di sebuah restoran. Beliau mendapat ar kopi susu yang disediakan terlalu panas. Gambar foto 4 menunjukkan dua cara yang dicadangkan untuk menyejukkan air kopi susu tersebut.



Gambar foto 4

- (a) Bincangkan kesesuaian antara cara A dengan B untuk menyejukkan air kopi susu dalam cawan.
- (b) Nyatakan pilihan anda. Berikan sebab bagi pilihan anda. 🧠

5. Asas Gelombang

Gelombang

Apabila membaca perkataan gelombang, apakah contoh gelombang yang anda fikirkan? Gambar foto 5.1 dan 5.2 menunjukkan dua contoh gelombang. Bagaimanakah gelombang terhasil?

Gambar foto 5.1 Belulang kompang yang dipalu menghasilkan gelombang bunyi

Gambar foto 5.2 Objek yang terjatuh ke permukaan air menghasilkan gelombang air

Aktiviti 5. I

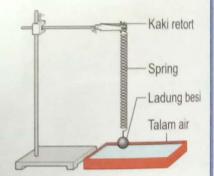
Tujuan: Mengkaji penghasilan gelombang oleh satu sistem ayunan dan satu sistem getaran

Radas: Spring, kaki retort, ladung, talam air, tala bunyi, bola pingpong dan penukul

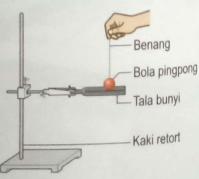
Bahan: Air, benang dan pita selofan

Arahan:

A Ayunan ladung di hujung spring


- 1. Susun radas seperti yang ditunjukkan dalam Rajah 5.1.
- 2. Laraskan ketinggian spring supaya ladung tergantung berhampiran permukaan air tanpa menyentuh permukaan air.
- 3. Tarik ladung ke bawah sehingga menyentuh permukaan air dan lepaskannya.
- 4. Perhatikan ayunan ladung dan keadaan permukaan air.

B Getaran tala bunyi


- 1. Apitkan tala bunyi pada pengapit kaki retort.
- 2. Ketuk lengan tala bunyi dan dengar bunyi yang terhasil.
- 3. Sentuh bola pingpong pada lengan tala bunyi seperti yang ditunjukkan dalam Rajah 5.2.
- 4. Perhatikan gerakan bola pingpong itu.

Perbincangan:

- 1. Huraikan gerakan ladung setelah ladung itu ditarik dan dilepaskan.
- 2. Apakah yang terbentuk pada permukaan air di dalam
- 3. Huraikan gerakan bola pingpong apabila disentuh pada tala bunyi yang sedang mengeluarkan bunyi.
- 4. Hubung kaitkan getaran bola pingpong dengan bunyi yang anda dengar.

Rajah 5.1

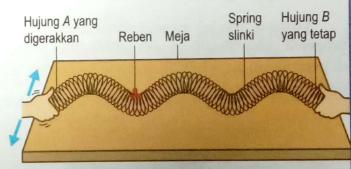
Rajah 5.2

Gelombang dapat dihasilkan apabila satu sistem berayun atau bergetar di dalam suatu medium. Contohnya, ayunan ladung besi di atas permukaan air menghasilkan gelombang air.

Getaran tala bunyi dalam udara pula menghasilkan gelombang bunyi. Getaran dan ayunan ialah gerakan ulang-alik pada kedudukan keseimbangan mengikut satu lintasan yang tertutup.

> Adakah gelombang memindahkan tenaga dan jirim?

Cuba hasilkan gerakan Mexican wave di dalam kelas bersama rakan-rakan. Bincangkan ciri-ciri gelombang yang dapat anda kenal pasti dalam gerakan ini.

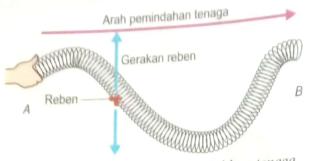


Tujuan: Menjana idea gelombang memindahkan tenaga tanpa memindahkan jirim

Bahan: Spring slinki dan reben

Arahan:

- 1. Ikat reben pada spring slinki seperti dalam Rajah 5.3.
- 2. Hujung A dan hujung B spring slinki dipegang oleh dua orang murid yang berlainan.
- 3. Gerakkan hujung A spring slinki dari sisi ke sisi secara mengufuk.
- 4. Perhatikan gerakan gelombang sepanjang spring slinki dan gerakan reben.



Rajah 5.3

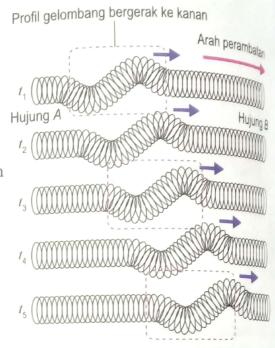
Perbincangan:

- 1. Apakah yang dirasai oleh tangan murid di hujung B setelah hujung A spring slinki digerakkan dari sisi ke sisi secara mengufuk?
- 2. Apakah arah pemindahan tenaga sepanjang spring slinki itu?
- 3. Huraikan pergerakan reben yang diikat pada spring slinki.

Melalui Aktiviti 5.2, kita dapat membuat kesimpulan bahawa gelombang dihasilkan apabila suatu medium digetarkan di satu tempat yang tertentu. Perambatan gelombang memindahkan tenaga dari satu tempat ke tempat yang lain tanpa pemindahan jirim medium seperti yang ditunjukkan dalam Rajah 5.4 di halaman 174.

Rajah 5.4 Gelombang memindahkan tenaga

Jenis Gelombang


Rajah 5.5 menunjukkan rupa bentuk spring slinki pada lima ketika yang berturut-turut selepas hujung *A* digerakkan seperti dalam Aktiviti 5.2. Rupa bentuk spring slinki semasa gelombang merambat melaluinya dikenali sebagai **profil gelombang**.

Gelombang boleh dikelaskan dari aspek perambatan profil gelombang. Profil gelombang dalam Rajah 5.5 merambat dengan masa sepanjang arah perambatan gelombang. Gelombang ini dikenali sebagai gelombang progresif.

Gambar foto 5.3 menunjukkan contoh gelombang progresif yang dihasilkan oleh getaran seekor anak itik di permukaan air. Profil gelombang merambat keluar dalam semua arah.

Gerakan gelombang dari hujung A ke hujung B telah memindahkan tenaga dari A ke B.

Reben cuma bergetar sekitar satu kedudukan yang tetap. Reben itu tidak bergerak dalam arah tenaga dipindahkan oleh gelombang.

Rajah 5.5 Profil gelombang pada lima ketika yang berturut-turut

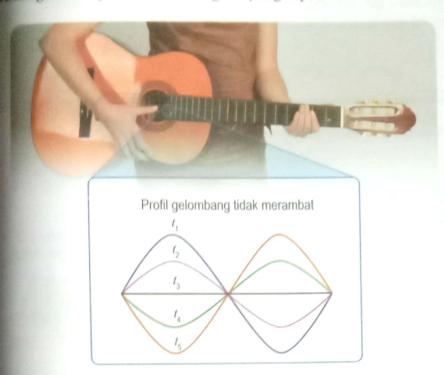
Gambar foto 5.3 Gelombang progresif di atas permukaan air

Gelombang progresif boleh merambat melalui suatu medium sebagai gelombang melintang atau gelombang membujur. Imbas *QR code* untuk memerhatikan gelombang melintang dan gelombang membujur.

di atas permukaan air

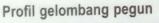
Video gelombang progresif

http://bit. ly/2FXZi30


Gelombang melintang dan gelombang membujur

http://bit. ly/2RQblrj

Rajah 5.6 menunjukkan profil gelombang pada lima ketika yang berturut-turut bagi sebahagian daripada seutas tali gitar yang dipetik.



Fail INFO

Gelombang pegun dihasilkan apabila dua gelombang progresif yang serupa dan bergerak dalam arah yang bertentangan bertembung dengan satu sama lain.

Rajah 5.6 Profil gelombang pada lima ketika yang berturut-turut

Gelombang yang dihasilkan sepanjang tali gitar yang dipetik ialah satu contoh gelombang pegun. Gelombang pegun ialah gelombang apabila profil gelombang tidak merambat dengan masa. Anda boleh imbas *QR code* yang diberikan di sebelah untuk memerhatikan profil gelombang pegun. Gelombang pegun juga dihasilkan oleh alat muzik seperti ukulele, seruling dan gendang apabila alat-alat ini dimainkan.

http://bit. ly/2UlRQmm

Gelombang juga boleh dikelaskan kepada gelombang mekanik dan gelombang elektromagnet.

Rajah 5.7 menunjukkan ciri-ciri gelombang mekanik dan gelombang elektromagnet.

Gelombang mekanik

- Memerlukan medium untuk memindahkan tenaga dari satu titik ke titik yang lain
- Terdiri daripada getaran zarah-zarah medium
- Gelombang air, gelombang bunyi dan gelombang seismik di atas permukaan Bumi ialah contoh gelombang mekanik.

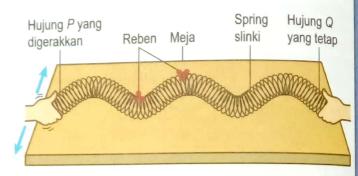
Gelombang elektromagnet

- Tidak memerlukan medium untuk memindahkan tenaga
- Terdiri daripada ayunan medan elektrik dan medan magnet yang berserenjang antara satu sama lain
- Gelombang radio, gelombang cahaya dan sinar gama ialah contoh gelombang elektromagnet.

Rajah 5.7 Ciri-ciri gelombang mekanik dan gelombang elektromagnet

Perbandingan antara Gelombang Melintang dengan Gelombang Membujur

Ada dua jenis gelombang progresif, iaitu gelombang melintang dan gelombang membujur. Apakah persamaan dan perbezaan antara kedua-dua gelombang ini?


Tujuan: Membandingkan gelombang melintang dan gelombang membujur

Bahan: Spring slinki dan reben

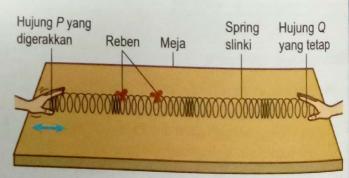
A Gelombang melintang

Arahan:

- Ikat dua utas reben pendek pada spring slinki.
- 2. Hujung P dan hujung Q spring slinki dipegang oleh dua orang murid yang berlainan.
- Gerakkan hujung P ke kiri dan ke kanan secara berulang sehingga membentuk satu corak gelombang seperti yang ditunjukkan dalam Rajah 5.8.

Rajah 5.8

- 4. Perhatikan perambatan gelombang sepanjang spring slinki dan gerakan reben.
- 5. Lukiskan profil gelombang yang terhasil dan tandakan arah perambatannya.
- 6. Tandakan arah gerakan reben yang diikat pada spring slinki.


Perbincangan:

Bandingkan arah perambatan gelombang dan arah gerakan reben-reben yang diikat pada spring slinki.

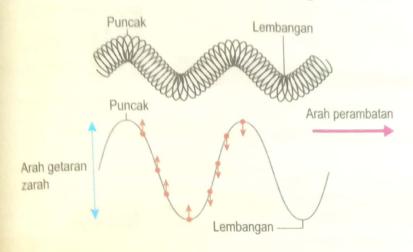
B Gelombang membujur

Arahan:

- Ulangi aktiviti A dengan menggerakkan hujung spring slinki ke depan dan ke belakang secara berulang sehingga membentuk gelombang seperti yang ditunjukkan dalam Rajah 5.9.
- 2. Perhatikan perambatan gelombang sepanjang spring slinki dan gerakan kedua-dua reben.
- 3. Lakarkan rupa bentuk sepanjang spring slinki dan tandakan arah perambatan.

Rajah 5.9

4. Tandakan arah gerakan reben-reben yang diikat pada spring slinki.


Perbincangan:

Bandingkan arah perambatan gelombang dan arah gerakan reben.

Gelombang melintang

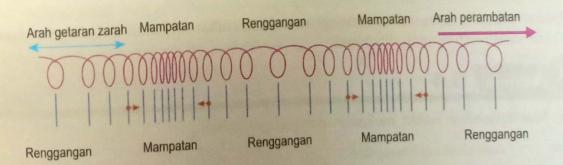
- Zarah-zarah medium bergetar pada arah yang berserenjang dengan arah perambatan gelombang.
- · Terdiri daripada puncak dan lembangan yang berturutan

Rajah 5.10 Gelombang melintang

 Gelombang radio, gelombang cahaya dan gelombang air merupakan contoh gelombang melintang.

Fail INFO

Gempa bumi menghasilkan gelombang-P dan gelombang-S. Gelombang-S ialah gelombang melintang dan gelombang-P ialah gelombang membujur. Kedua-dua gelombang ini mempunyai laju yang berbeza. Analisis perbezaan masa antara kedua-dua gelombang ini membantu menentukan pusat gempa bumi.



KERJAYA

Ahli seismologi mengkaji, meramal dan melaporkan kejadian gempa bumi.

Gelombang membujur

- Zarah-zarah medium bergetar pada arah yang selari dengan arah perambatan gelombang.
- Terdiri daripada bahagian mampatan dan renggangan yang berturutan.

Rajah 5.11 Gelombang membujur

Gelombang bunyi merupakan satu contoh gelombang membujur.

Rajah 5.12 menunjukkan profil gelombang air di sebuah kolam. Apakah perubahan yang anda dapat perhatikan semasa gelombang itu merambat merentasi permukaan air?

Perubahan profil gelombang

http://bit. ly/2WmU0Hw

Rajah 5.12 Profil gelombang air

Untuk menjawab soalan ini, anda perlu mengetahui definisi istilah yang berkaitan dengan gelombang.

Jadual 5.1 Definisi istilah berkaitan dengan gelombang

Istilah	Definisi
Amplitud, A	Sesaran maksimum suatu zarah dari kedudukan keseimbangan
Tempoh, T	Masa yang diambil oleh suatu zarah untuk membuat satu ayunan lengkap atau untuk menghasilkan satu gelombang oleh suatu sumber gelombang
Frekuensi, f	Bilangan ayunan lengkap yang dilakukan oleh suatu zarah atau bilangan gelombang yang dihasilkan oleh suatu sumber gelombang dalam satu saat
Panjang gelombang, λ	Jarak di antara dua titik sefasa yang berturutan
Laju gelombang, v	Jarak yang dilalui sesaat oleh profil gelombang

Fail INFO

- Kedudukan keseimbangan ialah kedudukan asal zarah sebelum suatu sistem berayun.
- · Bagi gelombang dengan frekuensi, f:

· Sesaran ialah jarak suatu zarah dari kedudukan keseimbangan.

Jalankan Aktiviti 5.4 untuk menerangkan definisi istilah berkaitan dengan gelombang dengan cara yang lebih mudah difahami.

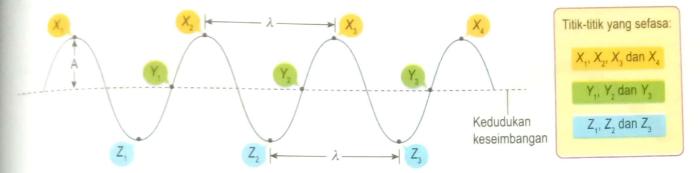
(KMK) (KIAK)

Tujuan: Mendefinisikan istilah berkaitan dengan gelombang

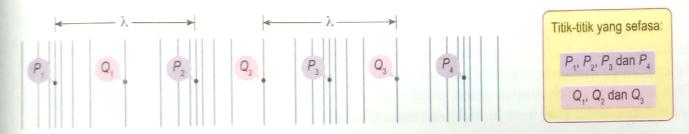
Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Imbas QR code dan tonton video tentang gelombang.
- 3. Cari maklumat daripada laman sesawang yang menerangkan definisi istilah berkaitan dengan gelombang.
- 4. Persembahkan hasil carian anda dalam bentuk persembahan multimedia yang menarik.

EduwebTV: Gelombang



http://bit. ly/2mcg86n


5.1.4

Rajah 5.13 mengilustrasikan **amplitud**, **titik-titik sefasa** dan **panjang gelombang** bagi gelombang melintang. Cuba anda mengenal pasti beberapa jarak lain yang bersamaan dengan panjang gelombang.

Rajah 5.13 Gelombang melintang

Rajah 5.14 pula menunjukkan titik-titik sefasa dan panjang gelombang bagi gelombang membujur. Berdasarkan Rajah 5.14, bolehkah anda mendefinisi panjang gelombang dalam sebutan mampatan atau renggangan?

Mampatan Renggangan Mampatan Renggangan Mampatan Renggangan Mampatan

Rajah 5.14 Gelombang membujur

Rajah 5.15 menunjukkan profil suatu gelombang melintang pada suatu ketika dan profil gelombang tersebut selepas masa yang sama dengan tempoh, T gelombang itu. Dalam masa, t = T, profil gelombang merambat melalui jarak yang sama dengan panjang gelombang, λ .

Daripada rumus, laju =
$$\frac{\text{jarak dilalui}}{\text{masa yang diambil}}$$

Laju gelombang, $v = \frac{\lambda}{T}$
= $\left(\frac{1}{T}\right)\lambda$
Frekuensi gelombang, $f = \frac{1}{T}$

Jadi, laju gelombang, $v = f\lambda$

Rajah 5.15 Profil suatu gelombang

Melakar dan Mentafsir Graf Gelombang

Rajah 5.16 menunjukkan profil suatu gelombang pada satu ketika yang tertentu.

Arah perambatan Kedudukan keseimbangan gelombang

Rajah 5.16 Profil gelombang melintang

Zarah-zarah sepanjang gelombang itu berayun ke atas dan ke bawah sekitar kedudukan keseimbangan. Imbas QR code yang diberi untuk memerhati perubahan sesaran zarah-zarah tersebut. Dua jenis graf boleh dilukis untuk perubahan sesaran zarah gelombang, iaitu graf sesaran melawan masa dan graf sesaran melawan jarak.

Tujuan: Melakar graf sesaran melawan masa dan graf sesaran melawan jarak

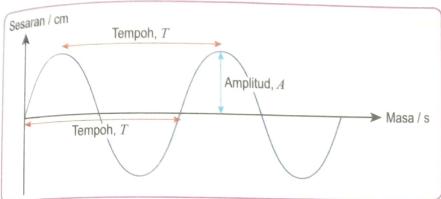
Arahan:

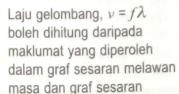
- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Imbas QR code untuk memerhati kaedah melakar graf sesaran melawan masa dan graf sesaran melawan jarak.
- 3. Lakar graf sesaran melawan masa bagi suatu gelombang yang mempunyai ciri berikut:
 - Amplitud, A = 5 cm
 - Tempoh, T = 0.4 s
- 4. Lakar graf sesaran melawan jarak bagi suatu gelombang yang mempunyai ciri berikut:
 - Amplitud, A = 5 cm
 - Panjang gelombang, $\lambda = 4$ cm

Video kaedah melakar graf sesaran melawan masa

http://bit. ly/2SduBxq

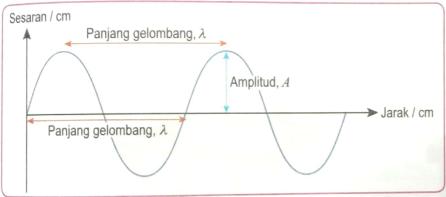
Video kaedah melakar graf sesaran melawan jarak


http://bit. ly/2Hvdked



Graf sesaran melawan masa dan graf sesaran melawan jarak masing-masing memberi maklumat tentang ciri-ciri gelombang. Rajah 5.17 menunjukkan ciri gelombang yang boleh ditafsirkan daripada dua graf tersebut.

Graf sesaran melawan masa



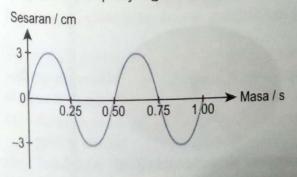
melawan jarak.

Maklumat yang diperoleh: Amplitud, A Tempoh, T Frekuensi, $f = \frac{1}{T}$

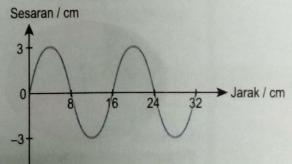
Graf sesaran melawan jarak

Maklumat yang diperoleh: Amplitud, A Panjang gelombang, λ

Rajah 5.17 Ciri-ciri gelombang yang boleh ditafsirkan daripada graf


KBMM

Tujuan: Mentafsir graf gelombang

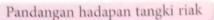

Arahan:

1. Jalankan aktiviti ini secara berkumpulan.

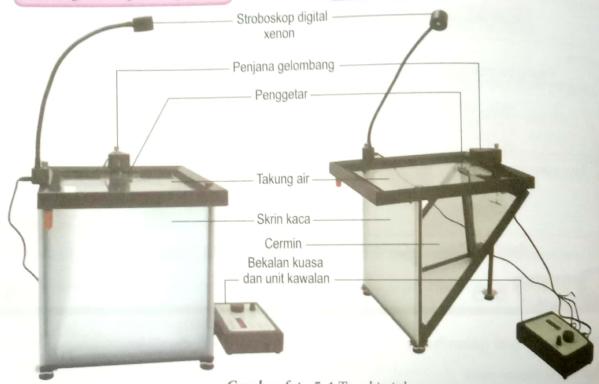
2. Teliti graf sesaran melawan masa dan graf sesaran melawan jarak bagi gelombang yang merambat sepanjang seutas tali.

Rajah 5.18 Graf sesaran melawan masa

Rajah 5.19 Graf sesaran melawan jarak


- (a) Amplitud, A
- (b) Tempoh, T
- (c) Frekuensi, f
- (d) Panjang gelombang, λ
- (e) Laju gelombang, v

Menentukan Panjang Gelombang, λ , Frekuensi, f dan Laju Gelombang, ν


Tangki riak digunakan di dalam makmal untuk mengkaji gelombang air. Tangki riak terdiri daripada takung air yang diperbuat daripada perspek atau kaca, penjana gelombang, stroboskop digital xenon, cermin, skrin kaca dan penggetar. Video demonstrasi penggunaan tangki _{riak}

http://bit. ly/2CHYsnH

Pandangan sisi tangki riak

Gambar foto 5.4 Tangki riak

Terdapat dua jenis penggetar yang boleh digunakan

Penggetar satah menghasilkan gelombang satah.

Penggetar sfera menghasilkan gelombang membulat.

Gambar foto 5.5 Jenis gelombang yang dihasilkan oleh jenis penggetar yang berlainan

Tujuan: Menentukan panjang gelombang, frekuensi dan laju gelombang

Radas: Tangki riak dan aksesorinya, stroboskop digital xenon dan pembaris

Bahan: Air suling

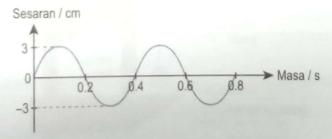
Arahan:

- 1. Susunkan radas seperti Gambar foto 5.6.
- 2. Hidupkan penggetar satah dan laraskan frekuensi stroboskop digital xenon supaya imej pada skrin kelihatan pegun.
- 3. Gunakan pembaris untuk ukur panjang gelombang air, iaitu jarak antara dua jalur cerah yang berturutan.

Perbincangan:

- 1. Berapakah frekuensi gelombang air?
- 2. Berapakah panjang gelombang air?
- 3. Berapakah laju gelombang?

Gambar foto 5.6



Nota: Sekiranya tiada stroboskop digital xenon, stroboskop tangan boleh digunakan.

Latihan Formatif

5.1

1. Rajah 5.20 menunjukkan graf sesaran melawan masa bagi suatu gelombang.

Rajah 5.20

- (a) Apakah yang dimaksudkan dengan amplitud?
- (b) Tentukan tempoh ayunan, T. Seterusnya, hitungkan frekuensi ayunan.
- 2. Banding dan bezakan antara gelombang progresif dengan gelombang pegun.
- Rajah 5.21 menunjukkan spring slinki yang sedang digerakkan ke depan dan ke belakang di satu hujungnya.
 - (a) Apakah jenis gelombang yang terhasil pada spring slinki?
- Gerakan tangan

 10 cm

Rajah 5.21

- (b) Tandakan "X" pada bahagian renggangan gelombang dalam Rajah 5.21.
- (c) Berapakah panjang gelombang, λ bagi gelombang tersebut?

5.2 Pelembapan dan Resonans

Pelembapan dan Resonans bagi Satu Sistem Ayunan dan Getaran Sistem ayunan yang disesar dan kemudian dibiarkan berayun tanpa tindakan daya luar, akan berayun dengan satu frekuensi yang tertentu yang dinamakan frekuensi asli. Apakah yang berlaku kepada amplitud ayunan sistem tersebut?

Tujuan: Memerhatikan kesan fenomena pelembapan ke atas suatu sistem yang berayun

Radas: Bandul ringkas yang terdiri daripada beg plastik berisi gula pasir diikat dengan

panjang benang 120 cm, kaki retort dan pengapit-G

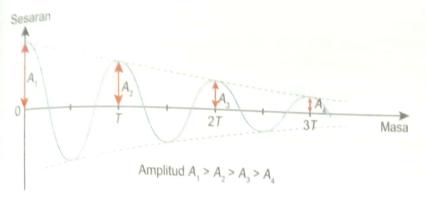
Bahan: Gula pasir halus, kertas hitam dan pensel tajam

Arahan:

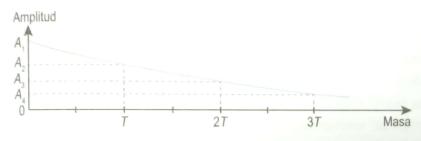
1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 5.22.

Rajah 5.22

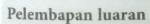
- 2. Tebuk satu lubang kecil di sebelah bawah beg plastik yang berisi gula pasir dengan menggunakan mata pensel yang tajam.
- 3. Sesar beg plastik itu ke sisi dan lepaskan supaya beg plastik itu berayun dengan perlahan berhampiran dengan lantai.
- 4. Tarik kertas hitam dengan laju seragam secara perlahan-lahan di bawah beg plastik itu.
- 5. Perhatikan corak yang dibentuk oleh gula pasir di atas kertas hitam.
- 6. Lakarkan corak yang dibentuk.


Perbincangan:

- 1. Apakah perubahan yang berlaku kepada amplitud ayunan beg plastik berisi gula pasir semasa beg plastik itu diayunkan?
- 2. Mengapakah ayunan beg plastik itu berhenti selepas suatu masa?


(5.2.1)

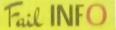
Rajah 5.23 menunjukkan graf sesaran melawan masa bagi ayunan dalam Aktiviti 5.8.


Rajah 5.23 Graf sesaran melawan masa bagi ayunan bandul ringkas

Perhatikan bahawa amplitud bagi ayunan itu berkurang dengan masa. Rajah 5.24 menunjukkan graf amplitud melawan masa bagi ayunan bandul ringkas itu.

Rajah 5.24 Graf amplitud melawan masa bagi ayunan bandul ringkas

Ayunan dengan amplitud yang berkurang dengan masa menunjukkan sesuatu sistem yang sedang berayun mengalami kehilangan tenaga secara beransur-ansur. Akhirnya ayunan itu berhenti. Fenomena ini dinamakan pelembapan. Sistem ayunan mengalami kehilangan tenaga disebabkan oleh:


Sistem ayunan kehilangan tenaga bagi mengatasi daya geseran atau rintangan udara.

Pelembapan dalaman

Sistem ayunan kehilangan tenaga kerana renggangan dan mampatan zarah-zarah yang bergetar dalam sistem tersebut.

Pelembapan ialah pengurangan amplitud suatu sistem ayunan akibat kehilangan tenaga. Semasa pelembapan berlaku, frekuensi ayunan adalah kekal manakala amplitud ayunan berkurang.

Kesan pelembapan dapat diatasi dengan mengenakan daya luar berkala ke atas sistem yang sedang berayun. Tindakan daya luar yang berkala memindahkan tenaga ke dalam sistem ayunan itu untuk menggantikan tenaga yang hilang. Sistem ayunan yang dikenakan daya luar berkala dikatakan sedang melakukan ayunan paksa.

Ayunan bandul ringkas mengalami pelembapan luaran yang ketara tetapi pelembapan dalaman yang tidak ketara. Bagi getaran spring, kedua-dua pelembapan luaran dan dalaman berlaku dengan ketara.

Fail INFO

Daya berkala ialah daya yang bertindak pada selang masa yang tertentu. Daya berkala tidak bertindak secara berterusan.

Resonans berlaku apabila suatu sistem ayunan dikenakan daya luar yang mempunyaj frekuensi yang sama dengan frekuensi asli sistem ayunan tersebut.

Semasa resonans:

- Sistem berayun dengan frekuensi aslinya.
- Sistem berayun dengan amplitud maksimum.

Tujuan: Mengkaji penghasilan resonans menggunakan Kit Tala Bunyi dan bandul Barton

Radas: Kit tala bunyi yang terdiri daripada dua buah tala bunyi dengan frekuensi yang sama tukul dan tablet yang dipasang dengan aplikasi meter bunyi

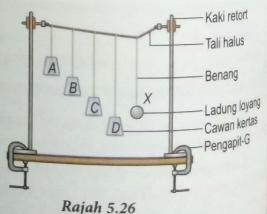
Arahan:

- 1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 5.25.
- 2. Buka aplikasi meter bunyi pada tablet dan perhatikan bacaan yang dipapar untuk bunyi latar.

- 4. Jauhkan tala bunyi Q dari tala bunyi P tanpa menyentuh lengannya.
- 5. Gunakan aplikasi meter bunyi untuk memerhatikan aras kekuatan bunyi bagi tala bunyi P dan Q secara berasingan.

Perbincangan:

- 1. Adakah bunyi dikesan oleh tablet apabila berada berhampiran dengan tala bunyi P dan Q?
- 2. Mengapakah tala bunyi Q mengeluarkan bunyi walaupun tidak diketuk. Terangkan.


B Bandul Barton

Radas: Kaki retort, ladung loyang dan pengapit-G

Bahan: Benang, tali halus, cawan kertas yang kecil dan pita selofan

Arahan:

- 1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 5.26.
- 2. Pastikan ladung loyang X dan ladung cawan kertas C berada pada aras ufuk yang sama supaya kedua-dua bandul ringkas itu mempunyai panjang yang sama.
- 3. Sesarkan bandul X dan lepaskannya.
- 4. Perhatikan ayunan bandul A, B, C dan D.
- 5. Kenal pasti bandul yang berayun dengan amplitud yang paling besar.

Tala bunyi P

Rajah 5.25

Tala bunyi Q

Perbincangan:


- 1. Bandul yang manakah berayun dengan amplitud paling besar?
- 2. Mengapakah bandul tersebut berayun dengan amplitud paling besar?

Getaran tala bunyi P telah memaksa tala bunyi Q bergetar secara resonans. Tenaga dipindahkan daripada tala bunyi P kepada tala bunyi Q. Tala bunyi Q bergetar dengan amplitud yang maksimum dan mengeluarkan bunyi yang boleh dikesan.

Ayunan bandul loyang X memindah tenaga kepada bandul A, B, C dan D menyebabkan keempat-empat bandul itu turut berayun. Resonans berlaku pada bandul C kerana bandul C mempunyai frekuensi asli yang sama dengan bandul X. Bandul C berayun dengan amplitud vang paling besar.

Kesan Resonans kepada Kehidupan

Video contoh resonans

http://bit.

ly/2RMIOCW

Tujuan: Menunjukkan video kesan-kesan resonans dalam kehidupan

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Berikut ialah contoh-contoh kesan resonans dalam kehidupan.

Pada tahun 1940, Jambatan Gantung Tacoma Narrows di Washington, Amerika Syarikat runtuh disebabkan tiupan angin kuat yang menyebabkan jambatan itu berayun secara resonans dengan amplitud yang besar.

London Millennium Footbridge dibuka pada bulan Jun 2000. Jambatan itu mengalami ayunan di luar jangkaan apabila seramai 2 000 orang pejalan kaki berjalan di atas jambatan baharu tersebut.

Resonans digunakan dalam penalaan peralatan muzik.

Cari video mengenai kesan resonans yang diberikan dan persembahkan video anda.

3. Anda juga digalakkan mencari contoh kesan resonans yang lain.

Latihan Formatif

5.2

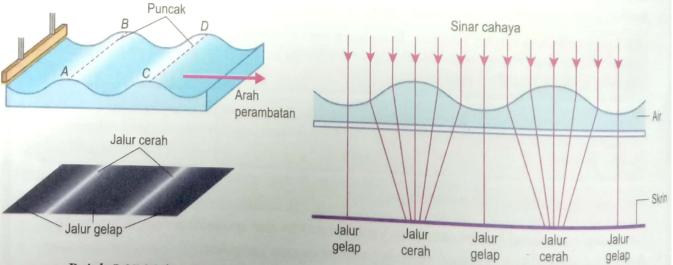
- 1. Apakah maksud pelembapan?
- 2. Lakarkan graf sesaran melawan masa bagi suatu sistem yang mengalami pelembapan.
- 3. Nyatakan tiga contoh kesan resonans terhadap kehidupan manusia.
- 4. Bagaimanakah pelembapan bagi suatu sistem ayunan dapat diatasi dengan resonans?

5.2.1 (5.2.2)

5.3 Pantulan Gelombang

Semasa di Tingkatan 1 dan 2, anda telah mempelajari bahawa cahaya dan gelombang bunyi boleh dipantulkan. Semua gelombang menunjukkan fenomena pantulan. Gambar foto 5.7 menunjukkan gelombang laut yang dipantul oleh benteng. Imbas *QR code* untuk menonton video perambatan gelombang pantulan.

Video perambatan gelombang pantulan



http://bit. ly/2FY1szE

Muka Gelombang

Fenomena pantulan gelombang boleh dikaji dengan bantuan tangki riak dan aksesorinya. Rajah 5.27 menunjukkan gelombang satah yang dihasilkan oleh tangki riak.

Rajah 5.27 Muka gelombang

Rajah 5.28 Pembentukan jalur cerah dan gelap

Semua titik di atas garis AB adalah sefasa sebab titik-titik tersebut berada pada jarak yang sama dari sumber getaran dan mempunyai sesaran yang sama. Garis AB yang menyambungkan muka gelombang. Apabila sinar cahaya bergerak melalui air di dalam tangki riak, satu siri jalur menunjukkan mekanisme pembentukan jalur cerah dan gelap oleh sinar cahaya.

Rajah 5.29 menunjukkan muka gelombang bagi gelombang satah dan gelombang membulat. Teliti arah perambatan dan panjang gelombang.

 Arah perambatan gelombang adalah serenjang dengan muka gelombang.

 Panjang gelombang, λ adalah sama dengan jarak antara dua muka gelombang yang berturutan.

Rajah 5.29 Muka gelombang satah dan bulat

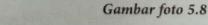
Apakah kesan ke atas ciri-ciri gelombang apabila suatu gelombang dipantulkan?

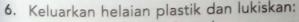
Tujuan: Mengkaji pantulan gelombang bagi gelombang air satah

Radas: Tangki riak dan aksesorinya, pemantul satah, stroboskop digital xenon, pembaris

dan protraktor

Bahan: Helaian plastik lut sinar, pen penanda, pita selofan dan air suling


Arahan:

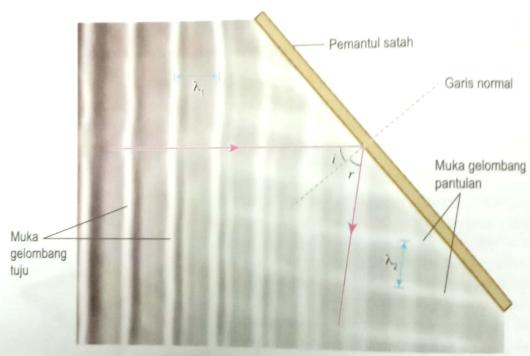

1. Sediakan radas seperti yang ditunjukkan dalam Gambar foto 5.8.

2. Hidupkan penggetar dan laraskan supaya frekuensi getaran adalah rendah.

Laraskan frekuensi stroboskop sehingga pergerakan gelombang kelihatan dibekukan. Perhatikan corak gelombang.

- Letakkan pemantul satah di dalam takung air.
- 5. Gunakan pen penanda untuk menandakan pada helaian plastik kedudukan bagi:
 - (a) pemantul satah
 - (b) tiga muka gelombang tuju yang berturutan, tiga muka gelombang pantulan yang berturutan

- (a) bentuk pemantul satah
- (b) tiga muka gelombang tuju dan muka gelombang pantulan
- (c) arah perambatan gelombang tuju dan gelombang pantulan
- (d) garis normal
- 7. Tentukan nilai-nilai yang berikut:
 - (a) sudut tuju, i dan sudut pantulan, r
 - (b) panjang gelombang tuju dan panjang gelombang pantulan


Helaian plastik lut sinar dilekatkan

pada skrin kaca

Perbincangan:

- Bandingkan sudut tuju dan sudut pantulan.
- 2. Bandingkan panjang gelombang tuju dan panjang gelombang pantulan.
- Bandingkan panjang gelombang tuju dan panjang
 Adakah stroboskop itu dapat membekukan pergerakan gelombang tuju dan gelombang pantulan pada masa yang sama?
- 4. Berdasarkan jawapan anda dalam soalan 3, bandingkan frekuensi gelombang tuju dan frekuensi gelombang pantulan.
- Daripada jawapan anda dalam soalan 2 dan 4, bandingkan laju gelombang tuju dan laju gelombang pantulan.

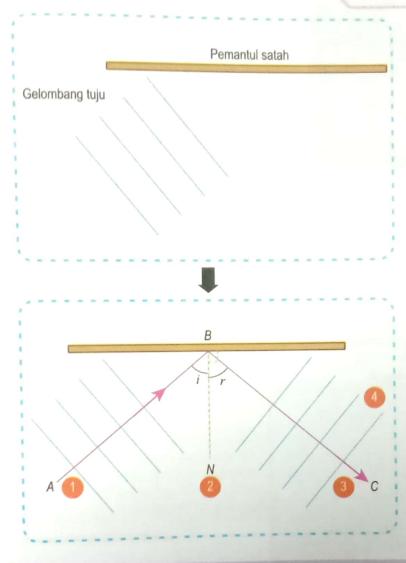
Gambar foto 5.9 menunjukkan pantulan gelombang air satah dalam tangki riak. Fenomena pantulan gelombang hanya menyebabkan arah gelombang berubah manakala ciri-ciri lain gelombang tidak mengalami perubahan.

Gambar foto 5.9 Pantulan gelombang air satah oleh pemantul satah

Jadual 5.2 meringkaskan kesan pantulan ke atas ciri-ciri gelombang.

Jadual 5.2 Kesan pantulan ke atas ciri-ciri gelomb

Ciri gelombang	Selenas pantal
Sudut tuju dan sudut pantulan	Selepas pantulan gelombang Sudut tuju = sudut pantulan
Panjang gelombang	Tidak berubah
Frekuensi	Tidak berubah
Laju gelombang	Tidak berubah
Arah perambatan	Berubah dengan keadaan sudut tuju sama dengan sudut pantulan



Melukis Gambar Rajah Pantulan Gelombang Air Rajah 5.30 menunjukkan muka gelombang satah bagi gelombang gajan yang menuju pemantul satah. Rajah pantulan gelombang itu yang mengikuti empat langkah di bawah.

Video melengkapkan rajah pantulan gelombang

http://bit. ly/2sNH6Bu

Langkah 1 Lukis anak panah AB berserenjang dengan muka gelombang tuju untuk mewakili arah perambatan gelombang tuju.

Langkah 2 Lukis garis normal BN yang serenjang dengan pemantul satah.

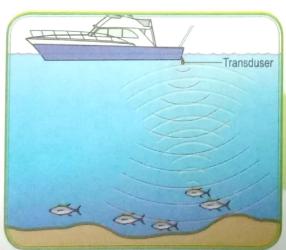
Langkah 3 Lukis anak panah BC dengan keadaan sudut CBN sama dengan sudut ABN untuk mewakili arah perambatan gelombang pantulan.

Langkah 4 Lukis garis-garis berserenjang dengan BC untuk mewakili muka gelombang pantulan. Panjang gelombang pantulan hendaklah sama dengan panjang gelombang tuju.

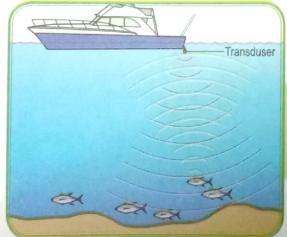
Rajah 5.30 Langkah-langkah melukis gambar rajah pantulan gelombang air

Aplikasi Pantulan Gelombang dalam Kehidupan Harian

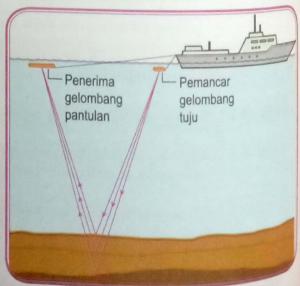
Fenomena pantulan gelombang telah diaplikasikan dalam kehidupan harian manusia dalam pelbagai bidang.



Gelombang ultrasonik yang dipantulkan oleh organ dalaman atau fetus memudahkan pemeriksaan perubatan.



Pegawai Sains (Fizik) di bahagian pengimejan diagnostik dan radioterapi perlu sentiasa memastikan semua radas di hospital yang menghasilkan sinaran diselenggara dan ditentu ukur agar sentiasa selamat digunakan.


Gelombang radio dari satelit komunikasi dipantulkan oleh antena parabola ke hon suapan.

Teknologi pemantulan ultrasonik yang dikenali sebagai SONAR membantu mengesan kawasan yang mempunyai banyak ikan. Transduser memancarkan gelombang ke dalam air dan gelombang tersebut dipantulkan oleh ikan kembali ke transduser.

Perbezaan dalam corak pantulan gelombang bunyi yang disebabkan oleh batu-batuan yang berbeza membolehkan lokasi, kedalaman dan struktur permukaan dasar laut yang mengandungi sumber gas asli dikenal pasti.

Rajah 5.31 Aplikasi pantulan gelombang dalam kehidupan harian

_{penyelesai}an Masalah Melibatkan Pantulan Gelombang

contoh 1

Gelombang ultrasonik berfrekuensi 25 kHz dipancar dari sebuah kapal ke dasar laut untuk menentukan kedalaman laut. Gelombang itu bergerak dengan laju 1 500 m s⁻¹ dalam air laut. Sela masa antara penghantaran dengan penerimaan semula gelombang ultrasonik ialah 120 ms. Tentukan

(a) kedalaman laut, dan

(b) panjang gelombang ultrasonik tersebut.

Penyelesaian:

Gelombang ultrasonik mengambil masa 120 ms untuk bergerak dari kapal ke dasar laut dan kembali semula ke kapal. Jarak dilalui oleh gelombang itu ialah dua kali kedalaman laut.

(a) Langkah
Senaraikan maklumat yang diberi dengan simbol.

Laju gelombang,
$$v = 1500 \text{ m s}^{-1}$$

Sela masa, $t = 120 \text{ ms}$

Langkah 🙆

Kenal pasti dan tulis rumus yang digunakan.

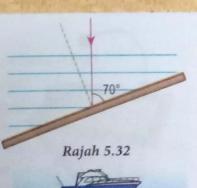
Jarak yang dilalui = Laju × masa
$$2d = vt$$

Langkah 3

Buat gantian numerikal ke dalam rumus dan lakukan penghitungan.

Kedalaman,
$$d = \frac{vt}{2}$$

$$= \frac{1500(120 \times 10^{-3})}{2}$$


$$= 90 \text{ m}$$

(b)
$$v = f\lambda$$
$$1500 = (25 \times 10^3)\lambda$$
$$\lambda = \frac{1500}{25 \times 10^3}$$
$$= 0.06 \text{ m}$$

Latihan Formatif

 Salin semula Rajah 5.32 dan lukiskan muka gelombang bagi gelombang pantulan serta tunjukkan arah pantulan gelombang air.

5.3

2. Rajah 5.33 menunjukkan penggunaan gelombang ultrasonik oleh sebuah kapal untuk menentukan kedalaman laut. Sela masa antara pemancaran dengan penerimaan gema bunyi ultrasonik tersebut ialah 0.06 saat. Kelajuan gelombang ultrasonik di dalam air laut ialah 1 500 m s⁻¹. Tentukan kedalaman laut tersebut.

Rajah 5.33

5.4 Pembiasan Gelombang

Gambar foto 5.10 menunjukkan muka gelombang laut yang melengkung semasa menuju tepi pantai. Kelengkungan muka gelombang ini disebabkan oleh fenomena pembiasan gelombang.

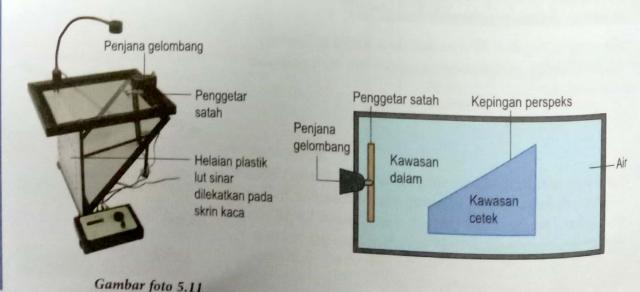
Pembiasan gelombang ialah perubahan arah perambatan gelombang yang disebabkan oleh perubahan halaju gelombang apabila gelombang itu merambat dari satu medium ke medium yang lain. Apakah kesan pembiasan terhadap ciri-ciri gelombang?

- Laju gelombang air dipengaruhi oleh kedalaman air.
- Laju gelombang bunyi dipengaruhi oleh ketumpatan udara.
- Laju gelombang cahaya dipengaruhi oleh ketumpatan optik medium.

Gambar foto 5.10 Pembiasan gelombang laut di Imsouane, Maghribi (Sumber: Image ©2019 CNES/Airbus)

Aktiviti 5.12

Tujuan: Mengkaji pembiasan gelombang bagi gelombang satah


Radas: Tangki riak dan aksesorinya, stroboskop digital xenon, penggetar satah, pembaris,

jangka sudut serta kepingan perspeks

Bahan: Helaian plastik lut sinar, pen penanda, pita selofan dan air suling

Arahan:

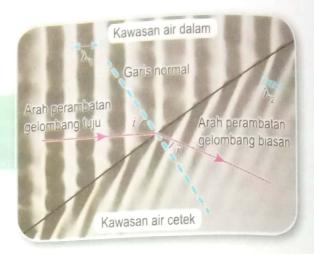
1. Sediakan radas seperti yang ditunjukkan dalam Gambar foto 5.11.

Rajah 5.34

- 2. Hidupkan penggetar dan laraskan supaya gelombang satah dengan frekuensi yang rendah dihasilkan.
- 3. Perhatikan muka gelombang satah yang merambat merentasi skrin.
- 4. Letakkan kepingan perspeks di dalam air seperti yang ditunjukkan dalam Rajah 5.34 supaya gelombang merambat dari kawasan air dalam ke kawasan air cetek.
- 5. Perhatikan gerakan muka gelombang di kawasan dalam dan kawasan cetek.
- 6. Laraskan frekuensi stroboskop sehingga pergerakan gelombang kelihatan dibekukan. Perhatikan corak gelombang.
- 7. Gunakan pen penanda untuk menandakan pada helaian plastik kedudukan bagi:
 - (a) garis sempadan antara kawasan dalam dengan kawasan cetek
 - (b) tiga muka gelombang tuju yang berturutan
 - (c) tiga muka gelombang biasan yang berturutan
- 8. Keluarkan helaian plastik dan lukiskan pada helaian plastik itu:
 - (a) garis sempadan antara kawasan dalam dengan kawasan cetek
 - (b) tiga muka gelombang tuju dan muka gelombang biasan
 - (c) arah perambatan gelombang tuju dan gelombang biasan
 - (d) garis normal
- 9. Tentukan nilai-nilai yang berikut:
 - (a) sudut tuju, i dan sudut biasan, r
 - (b) panjang gelombang tuju dan panjang gelombang biasan
- 10. Ulangi langkah 4 hingga 9 untuk gelombang yang merambat dari kawasan air cetek ke kawasan air dalam seperti dalam Rajah 5.35.

Rajah 5.35

Perbincangan:


- 1. Bandingkan sudut tuju dan sudut biasan untuk kedua-dua situasi.
- 2. Bandingkan panjang gelombang tuju dan panjang gelombang biasan untuk kedua-dua situasi.
- 3. Adakah stroboskop itu dapat membekukan pergerakan gelombang tuju dan gelombang biasan pada masa yang sama?
- 4. Berdasarkan jawapan anda dalam soalan 3, bandingkan frekuensi gelombang tuju dan frekuensi gelombang biasan.
- 5. Daripada jawapan anda dalam soalan 2 dan 4, bandingkan laju gelombang tuju dan laju gelombang biasan.

Daripada Aktiviti 5.12, anda akan memperoleh pembiasan gelombang air satah. Rajah 5.36 menunjukkan pembiasan gelombang air satah.

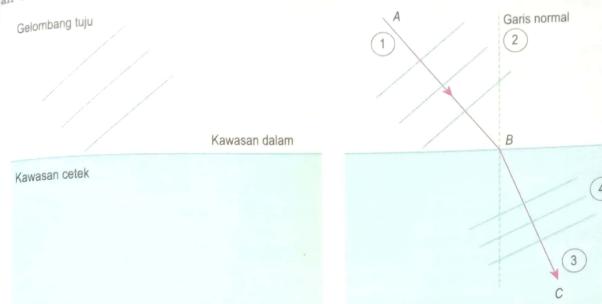
Dari kawasan air dalam ke kawasan air cetek.

Dari kawasan air cetek ke kawasan air dalam.

Rajah 5.36 Pembiasan gelombang air satah

Jadual 5.3 meringkaskan kesan pembiasan ke atas ciri-ciri gelombang. Bandingkan perbezaan antara ciri-ciri gelombang dari segi sudut tuju, sudut biasan, panjang gelombang, frekuensi, laju gelombang dengan arah perambatan.

Jadual 5.3 Kesan pembiasan ke atas ciri-ciri gelombang


Ciri gelombang	Dari kawasan air dalam ke kawasan air cetek	Dari kawasan air cetek ke kawasan air dalam	
Sudut tuju dan sudut biasan	Sudut tuju > sudut biasan	Sudut tuju < sudut biasan	
Panjang gelombang	Berkurang	Bertambah	
Frekuensi	Tidak berubah	Tidak berubah	
Laju gelombang	Berkurang	Bertambah	
Arah perambatan	Dibias mendekati garis normal	Dibias menjauhi garis normal	

Melukis Gambar Rajah Pembiasan Gelombang Air Satah

Rajah 5.37 menunjukkan muka gelombang satah di kawasan air dalam yang menuju kawasan air cetek.

Rajah 5.37

Muka gelombang bagi gelombang biasan boleh dilukis dengan mengikut empat langkah seperti berikut.

Langkah 1:

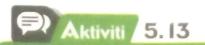
Lukis anak panah AB berserenjang dengan muka gelombang tuju untuk mewakili arah perambatan gelombang tuju.

Langkah 2:

Lukis garis normal yang berserenjang dengan sempadan kawasan dalam dan kawasan cetek di B.

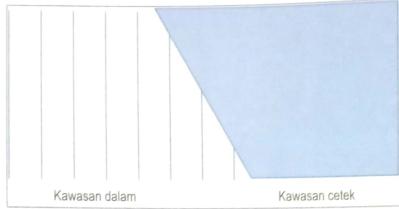
Langkah 3:

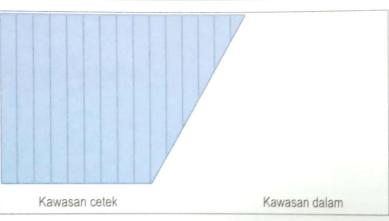
Lukis anak panah BC, yang lebih mendekati garis normal daripada AB untuk mewakili arah perambatan gelombang biasan.


Langkah 4:

Lukis tiga garis yang berserenjang dengan BC untuk mewakili muka gelombang biasan. Garis-garis hendaklah lebih rapat kepada satu sama lain berbanding dengan muka gelombang tuju.

Jika gelombang air merambat dari kawasan yang cetek ke kawasan yang dalam, arah perambatan gelombang biasan haruslah menjauhi garis normal.


5.4.2


Tujuan: Membincang dan melukis rajah pembiasan gelombang air satah yang merambat pada satu sudut tuju tertentu bagi dua kedalaman yang berbeza

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Muat turun Rajah 5.38 daripada laman sesawang yang diberikan.


Muat turun Rajah 5.38 http://bit. ly/2Wk1444

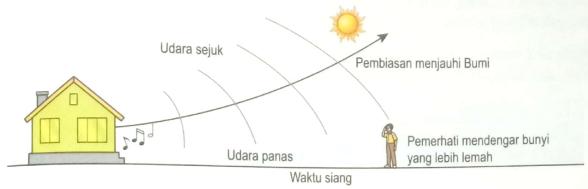
Rajah 5.38

3. Berdasarkan langkah-langkah melukis gelombang yang telah anda pelajari, bincang dan lengkapkan Rajah 5.38.

Fenomena Pembiasan Gelombang dalam Kehidupan

Pemikiran Logik KIAK KMK

Tujuan: Membincangkan fenomena semula jadi pembiasan gelombang


Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Cari maklumat mengenai fenomena semula jadi pembiasan gelombang.
- 3. Bentangkan dalam bentuk persembahan multimedia yang menarik.

pada waktu siang, udara yang berhampiran permukaan Bumi adalah lebih panas daripada udara di atas. Bunyi bergerak dengan lebih laju dalam udara panas berbanding dengan dalam udara sejuk. Dengan itu, gelombang bunyi dibiaskan menjauhi permukaan Bumi. Hal ini menyebabkan pemerhati mendengar bunyi yang lemah pada waktu siang. Perhatikan Rajah 5.39.

Rajah 5.39 Bunyi tidak kedengaran dengan jelas pada waktu siang

Pada waktu malam, udara yang berhampiran dengan permukaan Bumi adalah lebih sejuk. Gelombang bunyi dibiaskan mendekati permukaan Bumi. Hal ini menyebabkan pemerhati mendengar bunyi yang lebih kuat pada waktu malam. Perhatikan Rajah 5.40.

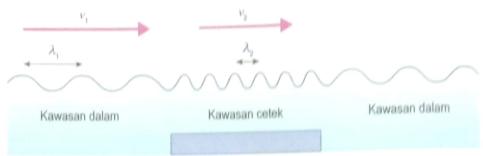
Rajah 5.40 Bunyi kedengaran lebih jelas pada waktu malam

Rajah 5.41 menunjukkan fenomena pembiasan gelombang air laut. Tanjung ialah kawasan air cetek manakala teluk ialah kawasan air dalam. Sebelum menghampiri pantai, muka gelombang air hampir lurus dan selari kerana gelombang air bergerak pada kelajuan yang seragam.

Apabila muka gelombang air merambat ke tanjung, laju gelombang air berkurang menyebabkan panjang gelombang menjadi lebih kecil. Muka gelombang air yang menuju ke arah teluk bergerak dengan kelajuan yang lebih tinggi dan panjang gelombang yang lebih besar. Hal ini menyebabkan muka gelombang membengkok dan

Teluk Tanjung Tanjung Kawasan air dalam Kawasan air cetek Laju lebih tinggi Laju lebih rendah Rajah 5.41 Pembiasan gelombang air laut

Pembiasan gelombang air menyebabkan tenaga gelombang ditumpukan pada kawasan tanjung mengikut bentuk tepi pantai.


menyebabkan amplitud ombak lebih tinggi. Di kawasan teluk, tenaga gelombang disebarkan ke kawasan yang lebih luas menyebabkan amplitud ombak lebih rendah dan air lebih tenang.

Menyelesaikan Masalah Melibatkan Pembiasan Gelombang

Pembiasan gelombang adalah disebabkan oleh perubahan laju gelombang. Bagi gelombang air, laju gelombang berubah apabila kedalaman air berubah. Hal ini menyebabkan panjang gelombang turut berubah. Walau bagaimanapun, frekuensi gelombang tidak berubah sebab frekuensi gelombang adalah ditentukan oleh frekuensi getaran di sumber gelombang itu.

Rajah 5.42 menunjukkan perubahan laju dan panjang gelombang apabila gelombang air merambat dari kawasan dalam ke kawasan cetek.

Rajah 5.42 Perambatan gelombang air dari kawasan dalam ke kawasan cetek

Contoh 1

Satu gelombang satah mempunyai panjang gelombang 2 cm dan laju 8 cm s⁻¹ merambat merentasi kawasan cetek. Apabila gelombang tersebut memasuki ke kawasan dalam, laju gelombang menjadi 12 cm s⁻¹, tentukan nilai panjang gelombang di kawasan dalam.

Penyelesaian:

Langkah 1

Senaraikan maklumat yang diberi dengan simbol.

Langkah

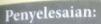
Kenal pasti dan tulis rumus yang digunakan.

Langkah @

Buat gantian numerikal ke dalam rumus dan lakukan perhitungan.

Kawasan cetek: $\lambda_1 = 2$ cm, $\nu_1 = 8$ cm s⁻¹ Kawasan dalam: $\nu_2 = 12$ cm s⁻¹, $\lambda_2 = ?$

$$\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$$


$$\frac{8}{2} = \frac{12}{\lambda_2}$$

$$\lambda_2 = \frac{12 \times 2}{8}$$

$$= 3 \text{ cm}$$

contoh 2

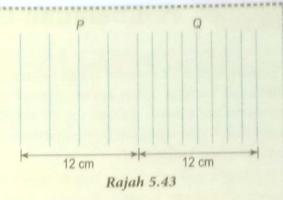
Rajah 5.43 menunjukkan perambatan gelombang air dari kawasan *P* ke kawasan *Q* yang berbeza kedalaman. Laju gelombang tersebut ialah 18 cm s⁻¹ di kawasan *P*. Tentukan laju gelombang tersebut di kawasan *Q*.

$$\lambda$$
 di kawasan P , $\lambda_1 = \frac{12}{4}$

$$= 3 \text{ cm}$$

$$\lambda$$
 di kawasan Q , $\lambda_2 = \frac{12}{8}$

$$= 1.5 \text{ cm}$$

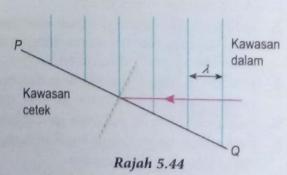

Kawasan *P*:
$$\lambda_1 = 3$$
 cm, $\nu_1 = 18$ cm s⁻¹

Kawasan Q:
$$\lambda_2 = 1.5 \text{ cm s}^{-1}$$
, $\nu_2 = ?$

$$\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$$

$$\frac{18}{3} = \frac{v_2}{1.5}$$

$$v_2 = \frac{18 \times 1.5}{3}$$



Latihan Formatif

1. Apakah fenomena gelombang yang berlaku apabila ombak laut bergerak menuju ke arah pantai? Jelaskan jawapan anda dengan bantuan gambar rajah.

5.4

- Rajah 5.44 menunjukkan gelombang air satah berfrekuensi 10.0 Hz merambat dari kawasan dalam ke sempadan kawasan cetek PQ. Laju gelombang air di kawasan dalam ialah 30 cm s⁻¹.
 - (a) Hitungkan panjang gelombang, λ.
 - (b) Hitungkan laju gelombang air di kawasan cetek jika panjang gelombang air di kawasan itu ialah 1.5 cm.

- (c) Dengan menggunakan anak panah, lukiskan arah perambatan gelombang di kawasan cetek dan seterusnya lakarkan muka-muka gelombang air yang terbias di kawasan itu.
- (d) Bandingkan frekuensi, panjang gelombang dan laju di kawasan dalam dan kawasan cetek.

5.5 Pembelauan Gelombang

Gambar foto 5.12 menunjukkan benteng yang dibina di Marang, Terengganu. Apakah yang menyebabkan muka gelombang air laut di kawasan A dan kawasan B mempunyai bentuk yang berlainan?

Muka gelombang air laut berubah daripada muka gelombang satah di kawasan A kepada muka gelombang membulat di kawasan B. Hal ini menunjukkan bahawa gelombang air laut mengalami penyebaran semasa merambat melalui celah pada benteng.

Gambar foto 5.12 menunjukkan fenomena yang dikenali sebagai pembelauan gelombang. Pembelauan gelombang boleh berlaku kepada gelombang air, cahaya dan bunyi.

Gambar foto 5.12 Benteng di Marang, Terengganu (Sumber: Image ©2019 TerraMetrics

Image ©2019 Maxar Technologies)

Tujuan: Menunjukkan pembelauan gelombang air, cahaya dan bunyi

(A) Pembelauan gelombang air

Radas: Tangki riak dan aksesorinya, stroboskop digital xenon serta penghalang

Bahan: Air suling

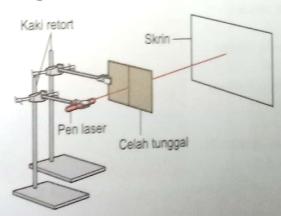
Arahan:


- 1. Susunkan radas seperti dalam Rajah 5.45.
- 2. Laraskan laju penjana gelombang supaya gelombang boleh dilihat dengan jelas pada skrin dengan stroboskop.
- 3. Letakkan penghalang untuk membentuk celah yang saiznya hampir sama dengan panjang gelombang yang dihasilkan.
- 4. Matikan penjana gelombang dan tunggu sehingga air di dalam tangki riak menjadi tenang.
- 5. Hidupkan semula penjana gelombang.
- 6. Perhatikan bentuk muka gelombang sebelum dan selepas melalui celah.
- 7. Lukiskan bentuk muka gelombang selepas melalui celah serta catatkan ciri-ciri muka gelombang sebelum dan selepas melalui celah dalam Jadual 5.4.

Rajah 5.45

Keputusan:

Perbincangan:


Bandingkan bentuk muka gelombang tuju dengan muka gelombang yang telah melalui celah.

(B) Pembelauan gelombang cahaya

Radas: Pen laser, kaki retort, celah tunggal dengan saiz celah yang sempit, celah tunggal dengan saiz celah yang lebar, lubang jarum bersaiz kecil, lubang jarum bersaiz besar dan skrin putih

Arahan:

1. Susunkan radas seperti dalam Rajah 5.47. Gunakan celah tunggal dengan saiz celah yang lebar.

Rajah 5.47

- 2. Tujukan alur cahaya laser melalui celah tunggal dengan saiz celah yang lebar. Perhatikan corak yang terbentuk pada skrin dan lukiskan corak tersebut dalam Jadual 5.5.
- 3. Ulangi langkah 2 menggunakan:
 - (a) celah tunggal dengan saiz celah yang sempit
 - (b) lubang jarum bersaiz besar
 - (c) lubang jarum bersaiz kecil

Anda juga boleh menjalankan aktiviti ini menggunakan celah tunggal boleh laras buatan sendiri seperti yang ditunjukkan di bawah.

Demonstrasi menggunakan celah tunggal boleh laras buatan sendiri

http://bit. lv/2UQnKqU

Keputusan:

Jadual	P P
laauai	77 - 7
1000000000	

Jadual 5.5		
Saiz celah yang lebar	Saiz celah yang sempit	
Lubang jarum yang besar	Lubang jarum yang kecil	

Perbincangan:

- 1. Apakah perbezaan imej yang dibentuk pada skrin oleh celah tunggal dengan saiz celah yang lebar dan celah tunggal dengan saiz celah yang sempit?
- 2. Bandingkan imej yang dibentuk pada skrin oleh lubang jarum yang kecil dengan lubang jarum yang besar.

C Pembelauan gelombang bunyi

Radas: Tablet dan pembesar suara kecil yang boleh disambung kepada tablet

Arahan:

- 1. Jalankan aktiviti ini di luar bilik darjah.
- 2. Muat turun aplikasi penjana bunyi dari laman sesawang yang diberikan.
- 3. Mainkan bunyi berfrekuensi 500 Hz pada tablet yang dipasang pembesar suara.
- 4. Berdiri di kedudukan X seperti yang ditunjukkan dalam Rajah 5.48 dan dengar bunyi dari pembesar suara.
- 5. Ulangi langkah 4 dengan berdiri di kedudukan Y.
- 6. Catat pemerhatian anda dalam Jadual 5.6.

Kedudukan	Pendengaran bunyi
X	
Y	

Keputusan:

Jadual 5.6

Perbincangan:

- 1. Adakah bunyi daripada pembesar suara boleh didengar di kedudukan X dan Y?
- 2. Jelaskan mengapa bunyi boleh didengar di kedudukan Y walaupun pembesar suara itu tidak kelihatan.

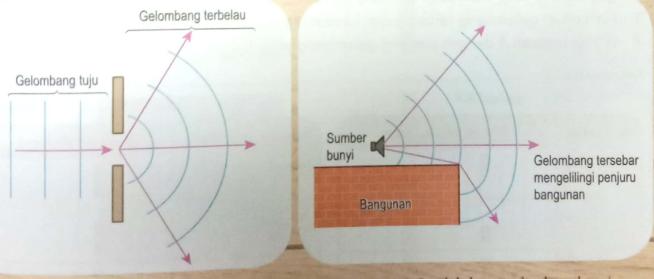
Aplikasi penjana bunyi

http://bit.

ly/2VfXYS0

Rajah 5.48

Pembelauan gelombang ialah penyebaran gelombang apabila gelombang itu merambat melalui suatu celah atau tepi suatu penghalang. Kesan pembelauan ke atas ciri-ciri gelombang diringkaskan dalam Jadual 5.7.



Semakin besar amplitud, semakin besar tenaga yang dibawa oleh gelombang itu.

Jadual 5.7 Kesan pembelauan ke atas ciri-ciri gelombang

Ciri gelombang	Perubahan disebabkan pembelauan	Penjelasan
Panjang gelombang	Tiada perubahan	Laju gelombang tidak berubah.
Frekuensi	Tiada perubahan	Tiada perubahan kepada frekuensi sumber.
Laju	Tiada perubahan	Tiada perubahan medium sebelum dan selepas pembelauan.
Amplitud	Berkurang	Tenaga gelombang tersebar meliputi kawasan yang lebih luas selepas dibelau.
Arah perambatan	Dari satu arah kepada banyak arah	Muka gelombang tersebar.

Rajah-rajah di bawah menunjukkan corak pembelauan gelombang air, cahaya dan bunyi.

Rajah 5.49 Corak belauan gelombang air

Rajah 5.50 Corak belauan gelombang bunyi

Corak belauan celah tunggal

Corak belauan lubang jarum

Rajah 5.51 Corak belauan gelombang cahaya

Faktor-faktor yang Mempengaruhi Pembelauan Gelombang

Tujuan: Mengkaji faktor-faktor yang mempengaruhi

pembelauan gelombang air

Radas: Tangki riak dan aksesorinya, stroboskop digital xenon

serta penghalang

Bahan: Air suling

Arahan:

A Kesan saiz celah ke atas pembelauan gelombang air

1. Sediakan tangki riak dan hidupkan penjana gelombang.

2. Perhatikan panjang gelombang pada skrin kaca.

3. Laraskan saiz celah supaya lebih besar daripada panjang gelombang.

4. Perhatikan gelombang terbelau dan lukiskan coraknya dalam Jadual 5.8.

5. Ulangi langkah 4 dengan saiz celah yang hampir sama dengan panjang gelombang.

B Kesan panjang gelombang ke atas pembelauan gelombang air

1. Laraskan saiz celah kepada lebih kurang 1 cm.

2. Laraskan frekuensi penjana gelombang untuk menghasilkan gelombang dengan panjang gelombang yang lebih kecil daripada saiz celah.

3. Perhatikan gelombang terbelau dan lukiskan coraknya dalam Jadual 5.9.

4. Ulangi langkah 3 dengan panjang gelombang yang hampir sama dengan saiz celah.

Keputusan:

Iadual 5.8

Saiz celah	Corak pembelauan	
Celah lebar	——————————————————————————————————————	
Celah sempit		

Iadual 5.9

Simulasi komputer

pembelauan gelombang

http://bit.

Simulasi berikut boleh dilihat menggunakan komputer sahaja

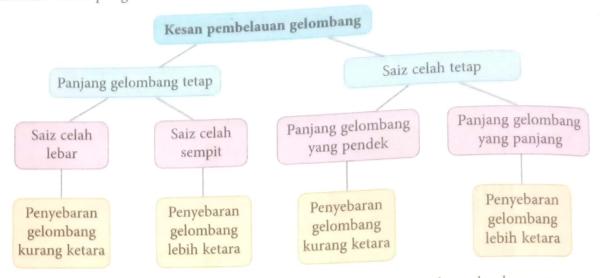
http://bit.ly/2Pqos05

ly/2za5AIo

Panjang gelombang	Corak pembelauan
Pendek	
Panjang	

Perbincangan:

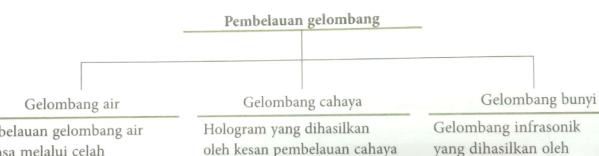
- 1. Bandingkan corak gelombang terbelau yang melalui celah lebar dan celah sempit.
- 2. Bandingkan corak gelombang terbelau apabila gelombang dengan panjang gelombang yang pendek dan yang panjang melalui suatu celah.


Melukis Gambar Rajah untuk Menunjukkan Corak Pembelauan Gelombang Air

Jadual 5.10 menunjukkan corak pembelauan gelombang air dalam simulasi tangki riak dan lakaran muka gelombangnya. Teliti kesan saiz celah dan panjang gelombang terhadap pembelauan gelombang air.

Jadual 5.10 Kesan saiz celah dan panjang gelombang ke atas corak pembelauan gelombang

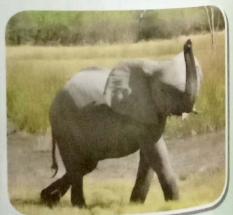
Faktor	Corak pembelauan	Lakaran muka gelombang	Catatan
Celah lebar			Panjang gelombang tetap
Celah sempit			
Panjang gelombang yang pendek			Saiz celah tetap
Panjang gelombang yang panjang			


Pembelauan gelombang dipengaruhi oleh saiz celah dan panjang gelombang. Rajah 5.52 merumuskan kesan pengaruh tersebut.

Rajah 5.52 Faktor-faktor yang mempengaruhi pembelauan gelombang dan kesannya

Pembelauan Gelombang dalam Kehidupan Harian

Rajah 5.53 menunjukkan contoh pembelauan gelombang air, cahaya dan bunyi.

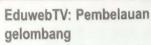

Pembelauan gelombang air semasa melalui celah menghasilkan kawasan air tenang yang sesuai untuk persinggahan kapal dan aktiviti rekreasi air. Hologram yang dihasilkan oleh kesan pembelauan cahaya digunakan sebagai tanda keselamatan pada kad bank seperti kad debit dan kad kredit. Gelombang infrasonik yang dihasilkan oleh gajah mempunyai panjang gelombang yang panjang untuk memudahkan komunikasi antara gajah pada jarak yang jauh.

Pantai Kok di Langkawi

Hologram pada kad bank

Gajah menghasilkan gelombang infrasonik

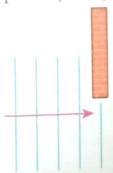
Rajah 5.53 Pembelauan gelombang air, cahaya dan bunyi



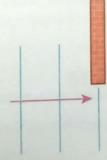
Tujuan: Mencari maklumat tentang pembelauan gelombang air, cahaya dan bunyi dalam kehidupan harian

Arahan:

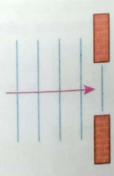
- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Rujuk bahan bacaan atau layari laman sesawang untuk mencari maklumat tentang pembelauan gelombang air, cahaya dan bunyi dalam kehidupan harian yang memanfaatkan manusia.
- 3. Bentangkan hasil carian anda dalam bentuk persembahan yang menarik.

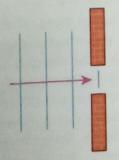

http://bit. hy/2k8Cbdo

Latihan Formatif


5.5

1. Lengkapkan rajah-rajah berikut dengan melukiskan corak pembelauan gelombang.


(a)


(b)

(c)

(d)

- 2. Rajah 5.54 menunjukkan pelan ruang tamu dan bilik tidur. Seorang budak yang baring di atas katil tidak dapat melihat televisyen di ruang tamu tetapi dapat mendengar bunyi dari
 - (a) Dengan melukis muka-muka gelombang, terangkan bagaimana fenomena pembelauan membolehkan budak tersebut mendengar bunyi televisyen.
 - (b) Nyatakan satu fenomena lain yang menyebabkan bunyi merambat dari televisyen ke budak itu. 🧢

Rajah 5.54

Cuba getarkan dua biji bola kecil seperti bola tenis di atas permukaan air. Bolehkah anda melihat corak yang terhasil apabila dua gelombang itu bertindih?

Gambar foto 5.13 Superposisi dua gelombang membulat

Gambar foto 5.13 menunjukkan dua gelombang pada permukaan air dalam sebuah tasik. Dua gelombang membulat yang dihasilkan bertindih atau bersuperposisi. Apakah yang berlaku apabila dua gelombang itu bersuperposisi?

Tujuan: Mengkaji superposisi gelombang menggunakan simulasi komputer

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Layari laman sesawang yang diberikan di sebelah.
- 3. Jalankan simulasi untuk superposisi yang berikut:
 - (a) puncak dan puncak dengan sesaran yang sama
 - (b) lembangan dan lembangan dengan sesaran yang sama
 - (c) puncak dan lembangan dengan sesaran yang sama
- 4. Lukiskan bentuk gelombang sebelum, semasa dan selepas superposisi bagi setiap simulasi di langkah 3.

5. Rekod pemerhatian anda dalam bentuk peta pokok.

Perbincangan:

- 1. Superposisi yang manakah menghasilkan sesaran yang lebih besar?
- 2. Superposisi yang manakah menghasilkan sesaran sifar?

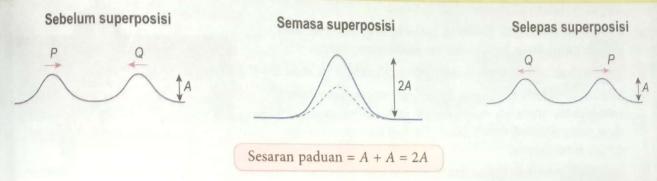
Prinsip superposisi menyatakan bahawa apabila dua gelombang bersuperposisi, sesaran paduan ialah hasil tambah sesaran individu bagi dua gelombang tersebut.

Simulasi komputer

superposisi gelombang

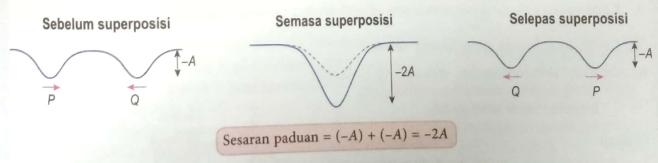
http://bit.

http://bit.

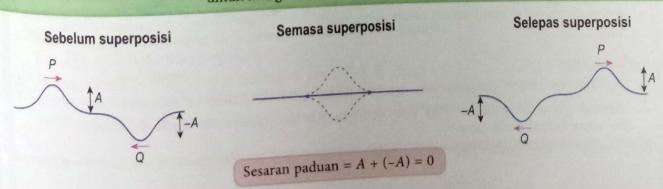

ly/2z80JHS

ly/2K4ZEF4

Interferens dengan Sumber Gelombang Koheren


Interferens gelombang ialah superposisi dua atau lebih gelombang dari sumber gelombang yang koheren. Dua sumber gelombang adalah koheren apabila frekuensi kedua-dua gelombang adalah sama dan beza fasa adalah tetap. Superposisi gelombang menghasilkan interferens

Interferens membina berlaku apabila dua puncak bersuperposisi untuk menghasilkan satu puncak yang tinggi.


Rajah 5.55 Interferens membina antara dua puncak

Interferens membina juga berlaku apabila dua lembangan bersuperposisi untuk menghasilkan lembangan yang dalam.

Rajah 5.56 Interferens membina antara dua lembangan

Interferens memusnah berlaku apabila satu puncak dan satu lembangan bersuperposisi untuk menghasilkan sesaran paduan sifar.

Rajah 5.57 Interferens memusnah antara satu puncak dengan satu lembangan

Tujuan: Menunjukkan interferens dengan dua sumber gelombang koheren

A Corak interferens gelombang air

Radas: Tangki riak dan aksesorinya serta stroboskop digital xenon

Bahan: Air suling

Arahan:

 Sediakan tangki riak dan pasangkan penggetar sfera seperti dalam Gambar foto 5.14.

Laraskan frekuensi penjana gelombang supaya satu corak yang jelas boleh dilihat pada skrin kaca.

3. Perhatikan corak interferens yang dibentuk di atas skrin.

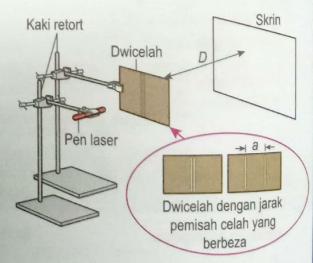
4. Ulangi langkah 1 hingga 2 dengan menggunakan penggetar sfera yg mempunyai jarak pemisahan antara dua pencelup yg lebih kecil. Perhatikan perubahan corak interferens.

Gambar foto 5.14

5. Laraskan penjana gelombang untuk memperoleh frekuensi gelombang yang lebih rendah, iaitu panjang gelombang yang lebih besar. Perhatikan perubahan corak interferens.

Perbincangan:

- 1. Mengapakah dasar tangki riak perlu dilaras sehingga berada dalam satu satah ufuk?
- 2. Apakah yang menyebabkan kawasan cerah dan kawasan gelap dalam corak interferens?
- 3. Cadangkan satu cara lain untuk menghasilkan dua gelombang membulat air yang koheren.


B Corak interferens gelombang cahaya

Radas: Pen laser, kaki retort, dua keping dwicelah dengan jarak pemisahan celah yang berbeza serta skrin putih

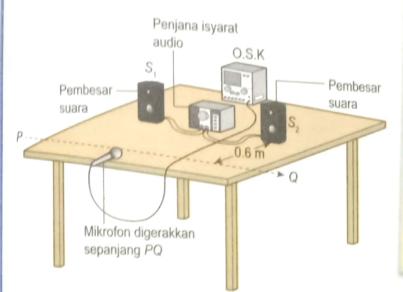
Arahan:

Perbincangan:

- Sediakan radas seperti yang ditunjukkan dalam Rajah 5.58.
- Tujukan alur cahaya laser melalui dwicelah. Perhatikan corak yang terbentuk pada skrin.
- Ulangi langkah 2 dengan dwicelah yang mempunyai jarak pemisahan celah yang lebih besar.

Rajah 5.58

- 1. Apakah fenomena yang berlaku apabila cahaya melalui setiap celah?
- 2. Apakah yang dibentuk di atas skrin apabila dua alur cahaya daripada dwicelah bersuperposisi pada skrin?
- 3. Terangkan kewujudan jalur gelap dalam corak interferens.



Corak interferens gelombang bunyi

gadas: Penjana isyarat audio, dua pembesar suara yang serupa, pembaris meter, mikrofon

Arahan:

1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 5.59. Dua pembesar suara itu diletak dengan jarak pemisahan 1.0 m antara satu sama lain.

Nota: Anda juga boleh menggunakan tablet bagi aktiviti ini dengan susunan radas seperti berikut: Pembesar suara Tablet dengan aplikasi penjana bunyi Tablet dengan aplikasi pengukur aras kekuatan bunyi dalam unit desibel (dB)

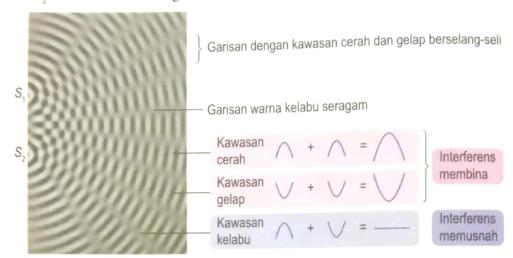
Rajah 5.59

- 2. Laraskan penjana isyarat audio kepada frekuensi 1000 Hz.
- 3. Hidupkan penjana isyarat audio. Laraskan O.S.K supaya bunyi yang diterima oleh mikrofon dapat memapar imej yang jelas pada skrin O.S.K. itu.
- 4. Gerakkan mikrofon secara perlahan-lahan di sepanjang garis lurus PQ yang berjarak 0.6 m dari pembesar suara.
- 5. Perhatikan imej pada O.S.K. apabila bunyi kuat dan bunyi perlahan dikesan.
- 6. Úlangi langkah 4 dan 5 dengan jarak pemisahan 0.5 m antara pembesar suara.

Perbincangan:

- 1. Mengapakah dua pembesar suara perlu disambung kepada penjana isyarat audio yang sama?
- 2. Hubung kaitkan imej yang dibentuk di skrin O.S.K. dengan bunyi yang didengar semasa anda berjalan di hadapan pembesar suara.

Interferens gelombang bunyi menggunakan tala bunyi Tala bunyi diketuk dan kemudian diputar dengan perlahan berhampiran dengan telinga.



Tala bunyi diputar dengan perlahan

Dalam Aktiviti 5.19, dapatkah anda mengenal pasti interferens membina dan memusnah bagi gelombang air, cahaya dan bunyi?

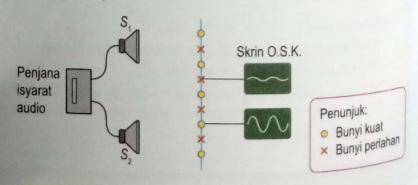
Interferens gelombang air

Rajah 5.60 menunjukkan corak interferens gelombang air yang dihasilkan oleh dua sumber koheren S_1 dan S_2 dalam sebuah tangki riak.

Rajah 5.60 Corak interferens gelombang air

Interferens gelombang cahaya

Rajah 5.61 menunjukkan corak interferens yang terbentuk pada skrin bagi cahaya daripada pen laser. Gelombang cahaya terbelau yang muncul daripada dwicelah adalah koheren. Superposisi gelombang daripada dwicelah menghasilkan corak yang terdiri daripada pinggir cerah dan pinggir gelap. Interferens membina menghasilkan pinggir cerah manakala interferens memusnah menghasilkan pinggir gelap.

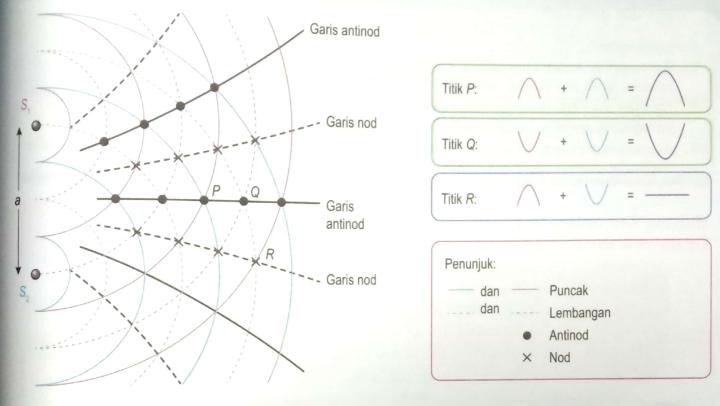

INTEGRASI SEJARAH

Aktiviti interferens gelombang cahaya juga dikenali sebagai eksperimen dwicelah Young sempena nama seorang ahli fizik, Thomas Young. Beliau berjaya menunjukkan cahaya bersifat gelombang melalui eksperimen yang menghasilkan pinggir cerah dan gelap.

Rajah 5.61 Corak interferens gelombang cahaya

Interferens gelombang bunyi

Gelombang bunyi tidak dapat dilihat. Pemerhati hanya dapat mendengar bunyi yang kuat di kawasan interferens membina dan bunyi yang perlahan di kawasan interferens memusnah. Rajah 5.62 menunjukkan imej yang dipapar pada skrin O.S.K.


Rajah 5.62 Corak interferens gelombang bunyi

Melukis Corak Gelombang Interferens

Interferens gelombang air, cahaya dan bunyi boleh dianalisis dengan melukis corak interferens seperti yang ditunjukkan dalam Rajah 5.63. Titik P dan Q ialah antinod, iaitu titik berlakunya interferens membina. Titik R ialah nod, iaitu titik berlakunya interferens memusnah.

Rajah 5.63 Corak interferens gelombang

Tujuan: Melukis corak interferens gelombang

Radas: Jangka lukis, pensel warna dan pembaris

Bahan: Kertas putih A4

Arahan:

- Jalankan aktiviti secara berkumpulan.
- 2. Lukiskan corak interferens A seperti yang ditunjukkan dalam Rajah 5.63.

Gunakan ukuran berikut:

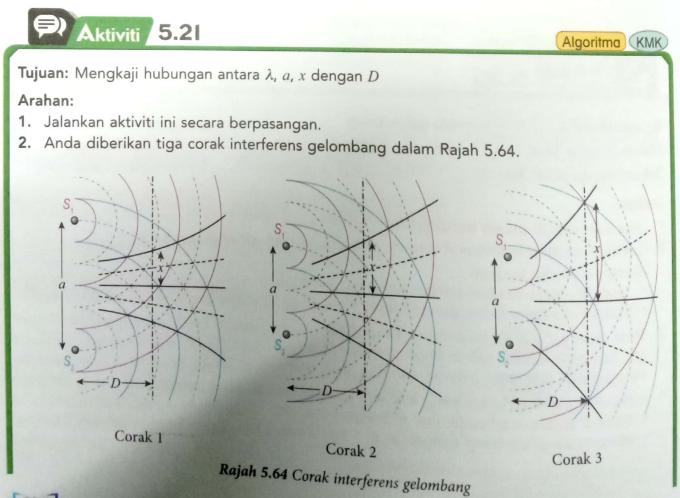
- Jarak di antara sumber-sumber koheren, a = 4 cm.
- Muka-muka gelombang dengan jejari 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm dan 7 cm.
- 3. Pada rajah yang anda lukis dalam langkah 2:
 - (a) Tandakan semua titik antinod dan titik nod
- (b) Lukiskan tiga garis antinod dan dua garis nod 4. Lukiskan corak interferens yang kedua B dengan ukuran yang berikut:
- Jarak di antara sumber-sumber koheren, a = 6 cm.
 - Muka-muka gelombang dengan jejari 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm dan 7 cm.

- 5. Lukiskan corak interferens yang ketiga, iaitu C dengan ukuran yang berikut:
 - Jarak di antara sumber-sumber koheren, a=4 cm.
 - Muka-muka gelombang dengan jejari 1.5 cm, 3.0 cm, 4.5 cm, 6.0 cm, dan 7.5 cm.
- 6. Pada rajah yang anda lukis dalam langkah 4 dan langkah 5, lukiskan tiga garis antinod dan dua garis nod.

Perbincangan:

- 1. Berdasarkan corak interferens A dan B, huraikan perubahan dalam corak interferens apabila jarak pemisahan antara sumber-sumber bertambah.
- 2. Dengan membandingkan corak interferens A dan C, huraikan perubahan dalam corak interferens apabila panjang gelombang bertambah.
- 3. Bagaimanakah jarak antara garisan antinod berubah di kedudukan yang semakin jauh daripada sumber-sumber koheren?

Hubung Kait antara Pemboleh Ubah dalam Corak Interferens Gelombang


Dalam corak interferens gelombang, terdapat empat pemboleh ubah, iaitu λ , a, x dan D.

 λ = panjang gelombang

a = jarak pemisahan antara dua sumber koheren

x = jarak pemisahan antara dua garis antinod atau garis nod yang bersebelahan

D = jarak tegak dari sumber koheren ke kedudukan x yang dilukis

3. Daripada Corak 1 dan Corak 2:

- (a) Tentukan pemboleh ubah yang dimalarkan.
- (b) Apakah hubungan antara x dengan a?

4. Daripada Corak 2 dan Corak 3:

(a) Apakah pemboleh ubah yang dimalarkan?

(b) Bandingkan λ.

(c) Apakah hubungan antara x dengan λ ?

5. Daripada Corak 3, tentukan hubungan antara x dengan D.


Dalam corak interferens gelombang air, bunyi dan cahaya, pemboleh ubah λ , a, x dan D saling bergantung kepada satu sama lain. Melalui Aktiviti 5.21, kita dapat menghubung kait antara empat pemboleh ubah tersebut sebagai $x = \frac{\lambda D}{a}$. Daripada hubung kait ini, kita memperoleh panjang gelombang, λ melalui rumus,

$$\lambda = \frac{ax}{D}$$

Menyelesaikan Masalah yang Melibatkan Interferens Gelombang

Contoh 1

Rajah 5.65 menunjukkan dwicelah Young menghasilkan corak interferens pada skrin. Jarak di antara pinggir cerah yang bersebelahan ialah 4.5 mm. Berapakah panjang gelombang cahaya yang digunakan?

Rajah 5.65 Eksperimen dwicelah Young

Pemisahan celah,
$$a = 0.4 \text{ mm}$$

= $0.4 \times 10^{-3} \text{ m}$

Jarak di antara pinggir cerah bersebelahan, x = 4.5 mm= $4.5 \times 10^{-3} \text{ m}$

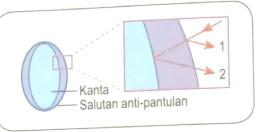
Jarak di antara skrin dengan dwicelah, D = 3.0 m

Panjang gelombang,
$$\lambda = \frac{ax}{D}$$

$$= \frac{(0.4 \times 10^{-3})(4.5 \times 10^{-3})}{3.0}$$

$$= 6.0 \times 10^{-7} \text{ m}$$

Aplikasi Interferens Gelombang dalam Kehidupan Harian


Pengetahuan mengenai interferens gelombang banyak digunakan dalam memanfaatkan kehidupan harian kita. Rajah 5.66 ialah contoh aplikasi interferens gelombang air, cahaya dan bunyi.

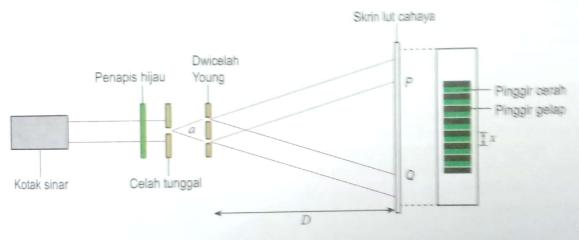
Luan bebuli menjana gelombang air yang berinterferens secara memusnah dengan gelombang air yang dihasilkan oleh haluan kapal. Hal ini menjadikan air di sekitar kapal lebih tenang dan mengurangkan seretan air.

Salutan pada permukaan kanta anti-pantulan menyebabkan cahaya terpantul berinterferens secara memusnah. Salutan ini membantu menjadikan penglihatan lebih jelas dan mengelakkan pembentukan imej pada kanta cermin mata.

Sistem mikrofon dan pemancar pada fon kepala yang digunakan di kapal terbang menghasilkan gelombang bunyi yang berinterferens secara memusnah dengan bunyi sekeliling yang hingar.

Rajah 5.66 Aplikasi interferens gelombang dalam kehidupan harian

Tujuan: Mencari maklumat berkaitan aplikasi interferens gelombang dalam kehidupan harian


Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Layari laman sesawang untuk mencari maklumat berkaitan aplikasi interferens gelombang dalam kehidupan harian.
- 3. Bentangkan hasil pencarian anda dalam bentuk persembahan multimedia yang menarik.

Latihan Formatif

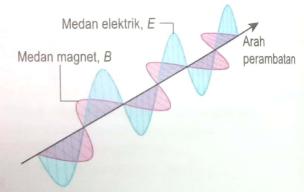
5.6

1. Rajah 5.67 menunjukkan eksperimen dwicelah Young.

Rajah 5.67

- (a) Nyatakan fenomena yang berlaku apabila cahaya melalui celah tunggal.
- (b) Apakah yang berlaku kepada dua alur cahaya dalam kawasan PQ di atas skrin?
- (c) Huraikan pembentukan pinggir cerah dan pinggir gelap. 🦱
- (d) Dalam sususan radas eksperimen ini, a = 0.30 mm, D = 2.5 m. Jarak di antara dua pinggir gelap yang bersebelahan ialah x = 4.6 mm. Hitungkan panjang gelombang cahaya hijau itu.

5.7 Gelombang Elektromagnet


Ciri-ciri Gelombang Elektromagnet

Rajah 5.68 menunjukkan secara ringkas sejarah penemuan saintifik awal yang membawa kepada pengetahuan hari ini mengenai gelombang elektromagnet.

Awal abad ke-20 1887 1801 1862 Gelombang elektromagnet Heinrich Hertz James Maxwell Thomas Young terdiri daripada: menjana satu menunjukkan mengemukakan 1. Sinar gama jenis gelombang cahaya ialah teori bahawa cahaya 2. Sinar-X elektromagnet gelombang ialah gelombang 3. Sinaran ultraungu yang lain, iaitu, menerusi elektromagnet. 4. Cahaya nampak gelombang radio. eksperimen 5. Sinaran inframerah interferens cahaya. 6. Gelombang mikro 7. Gelombang radio

Rajah 5.68 Sejarah gelombang elektromagnet

Gelombang elektromagnet terdiri daripada medan elektrik dan medan magnet yang berayun secara serenjang dengan satu sama lain, seperti yang ditunjukkan dalam Rajah 5.69. Apakah ciri-ciri gelombang elektromagnet?

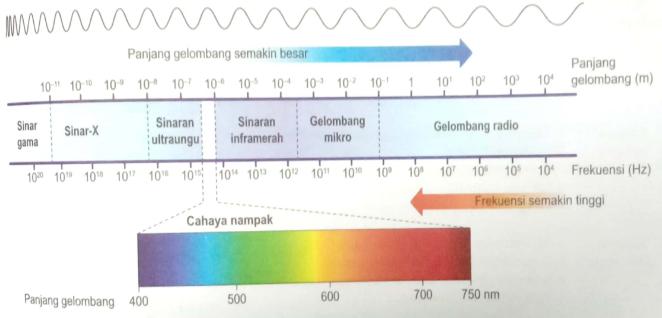
Rajah 5.69 Gelombang elektromagnet

Tujuan: Mencari maklumat berkaitan ciri-ciri gelombang elektromagnet

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Cari maklumat berkaitan ciri-ciri gelombang elektromagnet bagi aspek berikut:
 - (a) sama ada gelombang melintang atau membujur
 - (b) keperluan medium untuk perambatan
 - (c) laju dalam vakum
 - (d) laju dalam medium
 - (e) fenomena yang ditunjukkan
- 3. Rumuskan hasil carian anda menggunakan peta pemikiran yang sesuai dan tampalkan pada papan kenyataan untuk perkongsian maklumat.

Gelombang elektromagnet mempunyai ciri-ciri berikut:


- , merupakan gelombang melintang
- tidak memerlukan medium perambatan
- boleh merambat melalui vakum
- Laju dalam vakum, $c = 3.00 \times 10^8 \text{ m s}^{-1}$, dan bergerak dengan laju yang lebih kecil di dalam medium.
- menunjukkan fenomena pantulan, pembiasan, pembelauan dan interferens jika keadaannya sesuai

Fail INFO

- Untuk gelombang elektromagnet, rumus v = / λ ditulis semula sebagai $c = f \lambda$.
- Spektrum selanjar bermaksud tiada sempadan yang tertentu yang mengasingkan dua jenis gelombang yang bersebelahan.

Spektrum Elektromagnet

Tujuh jenis gelombang elektromagnet membentuk satu spektrum selanjar yang dikenali sebagai spektrum elektromagnet. Rajah 5.70 menunjukkan spektrum elektromagnet.

Rajah 5.70 Spektrum elektromagnet

Tenaga yang dibawa oleh gelombang elektromagnet berkadar terus dengan frekuensinya. Ini bermakna sinar gama dan sinar-X membawa tenaga yang besar. Dua jenis gelombang ini perlu diurus dengan kaedah yang betul supaya penggunaannya tidak membahayakan pengguna.

Aplikasi Gelombang Elektromagnet

Spektum elektromagnet terdiri daripada tujuh jenis gelombang yang berlainan dan meliputi julat panjang gelombang yang sangat luas. Oleh itu, aplikasi gelombang elektromagnet merangkumi Pelbagai bidang. Dengan kemajuan sains dan teknologi yang Pesat, aplikasi yang baharu ditemui dari semasa ke semasa. Apakah aplikasi gelombang elektromagnet yang anda tahu?

Telefon pintar sebagai alat kawalan jauh

Layari laman sesawang untuk mendapat garis panduan mengkonfigurasi telefon pintar untuk berfungsi sebagai alat kawalan jauh televisyen atau penghawa dingin.

Jadual 5.11 Aplikasi bagi setiap komponen spektrum elektromagnet dalam kehidupan

Jenis gelombang	Aplikasi	
Gelombang radio	 Komunikasi radio jarak jauh Penyiaran radio dan TV tempatan Komunikasi tanpa wayar (<i>Bluetooth</i>, <i>Wifi</i>, <i>zigbee dan z-wave</i>) Mesin gelombang-millimeter untuk mengimbas badan penumpang di lapangan terbang 	Walkie talkio
Gelombang mikro	 Komunikasi antarabangsa melalui penggunaan satelit Rangkaian telefon bimbit Komunikasi antara alat elektronik (Wifi, Bluetooth, zigbee dan z-wave) Pengesanan radar pesawat dan pemerangkap laju Memasak menggunakan gelombang mikro 	Ketuhar
Sinaran inframerah	 Untuk memasak (ketuhar, pemanggang dan pembakar) Untuk melihat dalam gelap (kamera inframerah dan teropong inframerah) Mengeringkan cat pada kereta Rawatan sakit otot Alat kawalan jauh untuk televisyen dan pemain DVD 	Alat kawalan jauh
Cahaya nampak	 Membolehkan benda hidup untuk melihat Fotografi Fotosintesis dalam tumbuhan hijau Cahaya laser digunakan dalam pemotongan logam, ukur tanah dan penghantaran maklumat melalui gentian optik 	Kabel optik gentian
Sinaran ultraungu	 Mengeraskan bahan tampalan gigi Menentukan kesahihan wang kertas Rawatan penyakit kuning pada bayi Penulenan air minuman Pensterilan alat perubatan dan makanan Alat perangkap serangga 	Mengeras tampalan gigi
Sinar-X	 Imej sinar-X membantu doktor mengesan retakan atau patah pada tulang dan memeriksa organ dalaman Pemeriksaan sambungan kimpalan Pengimbas bagasi di lapangan terbang Menentukan keaslian lukisan 	lmej (ulang palah pada lmej sinar-X
Sinar gama	 Membunuh sel kanser dalam radioterapi Pensterilan peralatan pembedahan dan perubatan secara pukal Digunakan dalam industri pemprosesan makanan supaya makanan tahan lebih lama 	Label penyinaran makanan

Penilaian KBMM KMK STEM

Muat turun Borang Strategi

http://bit.

ly/2HnTOAO

Data K-W-L.

Tujuan: Mengumpul maklumat mengenai aplikasi setiap komponen spektrum elektromagnet dalam kehidupan untuk meningkatkan kesedaran melalui pendekatan STEM.

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- Dengan merujuk kepada Jadual 5.11 di halaman 222, kumpulkan maklumat mengenai aplikasi gelombang elektromagnet yang lebih lengkap dan terperinci.
- 3. Pilih gelombang elektromagnet yang digunakan secara meluas oleh setiap golongan masyarakat dan kumpulkan maklumat seperti berikut:

- (b) Apakah kesan mudarat yang bakal dialami oleh pengguna akibat pendedahan kepada gelombang elektromagnet yang anda pilih?
- (c) Apakah langkah-langkah yang boleh diambil untuk mengurangkan pendedahan kepada gelombang elektromagnet yang anda pilih?
- 4. Bincangkan maklumat yang diperlukan dan lengkapkan Borang Strategi Data K-W-L.
- 5. Sediakan contoh risalah bercetak dan elektronik.
- 6. Dapatkan maklum balas rakan dan guru mengenai contoh risalah yang disediakan. Kemudian, buat penambahbaikan risalah tersebut sebelum mengedarkannya.

Latihan Formatif

5.7

1. Rajah 5.71 menunjukkan spektrum elektromagnet.

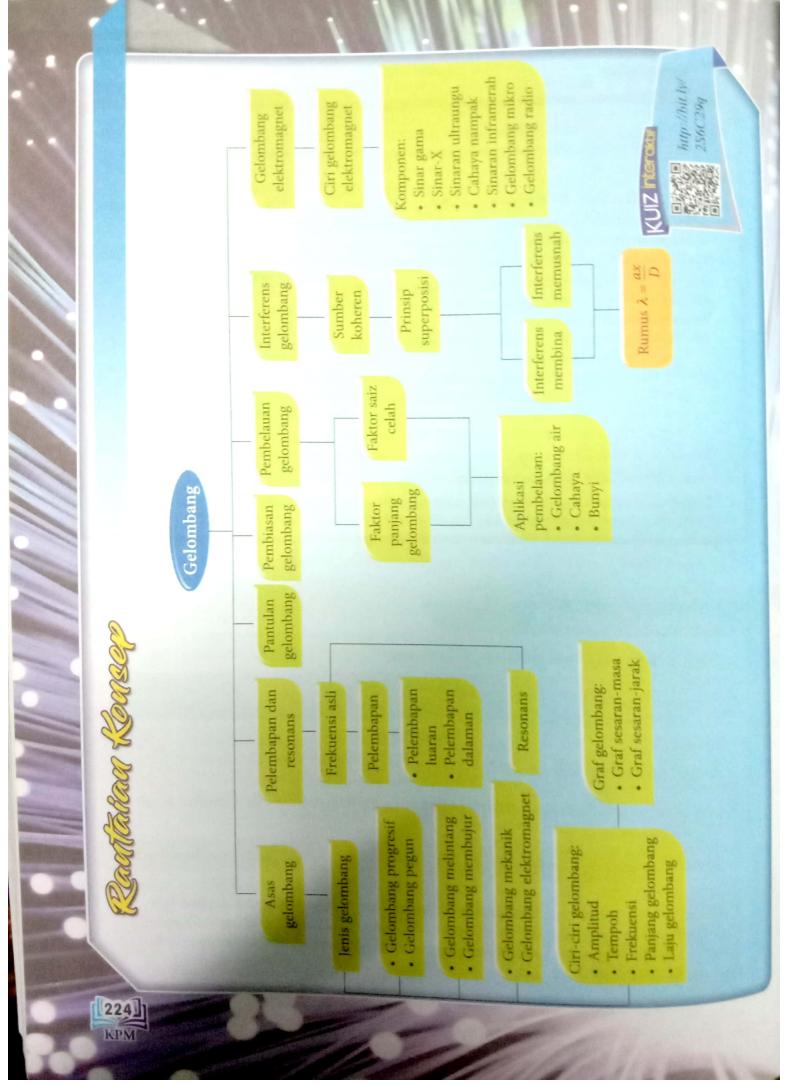
A	Sinar-X	В	Cahaya nampak	Sinaran inframerah	C	Gelombang radio
---	---------	---	------------------	-----------------------	---	--------------------

Rajah 5.71

Apakah gelombang A, B dan C?

2. Susunkan senarai gelombang elektromagnet yang diberikan di bawah mengikut tertib frekuensi menaik.

Sinaran inframerah


Sinar-X

Gelombang mikro

Sinar gama

Gelombang radio

3. Dalam udara, cahaya biru dengan panjang gelombang 420 nm bergerak dengan laju 3.00×10^8 m s⁻¹. Laju cahaya biru ini berkurang kepada 2.25×10^8 m s⁻¹ apabila melalui suatu medium cecair. Berapakah panjang gelombang cahaya biru itu dalam medium cecair tersebut?

Scanned by CamScanner

1. Perkara baharu yang saya pelajari mengenai bab gelombang ialah

2. Perkara paling menarik yang saya pelajari mengenai bab gelombang ialah

3. Perkara yang saya masih kurang fahami atau kuasai ialah

4. Prestasi saya dalam bab ini.

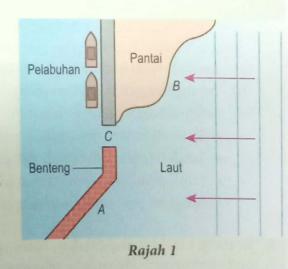
5. Saya perlu

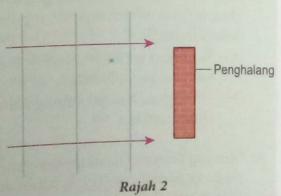
dalam bab ini.

Sangat baik

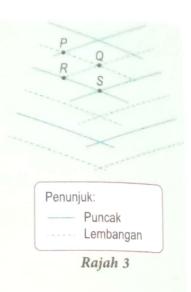
untuk meningkatkan prestasi saya

Muat turun dan cetak Refleksi Kendiri Bab 5

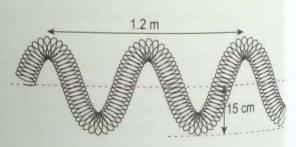



http://bit. ly/2G17sHQ

Penilaian Prestasi

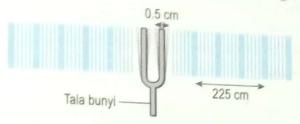

- 1. Rajah 1 menunjukkan sebuah pelabuhan dan kawasan sekitarnya.
 - (a) Nyatakan fenomena gelombang yang berlaku apabila gelombang laut
 - (i) bertembung benteng pelabuhan di A,
 - (ii) bergerak menghampiri pantai di B, dan
 - (iii) melalui laluan masuk pelabuhan di C.
 - (b) Lukiskan muka gelombang selepas gelombang melalui C.
 - (c) Apakah kesan ke atas gelombang jika laluan masuk pelabuhan dilebarkan lagi?
- 2. Rajah 2 menunjukkan muka gelombang air bertembung dengan sebuah penghalang. Lengkapkan Rajah 2 dengan melakar muka gelombang selepas penghalang itu.




- Rajah 3 di sebelah menunjukkan superposisi dua gelombang satah yang koheren.
 - (a) Apakah maksud gelombang yang koheren?
 - (b) Nyatakan titik-titik berlakunya
 - (i) interferens membina,
 - (ii) interferens memusnah.
 - (c) Terangkan dengan rajah yang sesuai interferens di titik
 - (i) Q,
 - (ii) R, dan
 - (iii) S.
- **4.** Rajah 4 menunjukkan susunan radas eksperimen dwicelah Young.

Rajah 4

- (a) Apakah yang berlaku kepada alur-alur cahaya di kawasan K?
- (b) Terangkan pembentukan pinggir cerah dan pinggir gelap di atas skrin.
- (c) Anda diberi maklumat berikut:
 - Jarak di antara dwicelah, a = 0.30 mm
 - Jarak di antara dwicelah dengan skrin, D = 2.70 m
 - Jarak pemisahan antara dua pinggir cerah yang bersebelahan, x = 4.0 mmHitungkan panjang gelombang cahaya biru dalam eksperimen ini.
- Seorang murid menggetarkan suatu spring slinki pada frekuensi 5 Hz supaya gelombang melintang yang terhasil adalah seperti yang ditunjukkan dalam Rajah 5.
 - (a) Tentukan amplitud, tempoh dan panjang gelombang.
 - (b) Hitungkan laju gelombang sepanjang spring slinki tersebut.



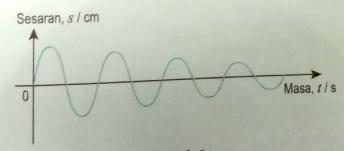
Rajah 5

6. Seorang pengadil meniup wisel yang menghasilkan bunyi dengan frekuensi 500 Hz dan panjang gelombang 0.67 m dalam udara. Berapakah laju gelombang bunyi tersebut

7. Rajah 6 menunjukkan satu tala bunyi sedang bergetar dan menghasilkan gelombang bunyi.

Rajah 6

Berdasarkan Rajah 6, tentukan


- (a) amplitud getaran tala bunyi,
- (b) panjang gelombang bunyi yang dihasilkan, dan
- (c) laju gelombang bunyi yang dihasilkan apabila tala bunyi bergetar dengan frekuensi 440 Hz.
- 8. Rajah 7 menunjukkan imej gelombang air bergerak dari kawasan air dalam ke kawasan air cetek.

 Gelombang tuju
 - (a) Dalam Rajah 7, lukis corak gelombang di kawasan A dan kawasan B.

Rajah 7

- (b) Diberi laju gelombang air pada kawasan air cetek dan kawasan air dalam masing-masing ialah 4.0 m s⁻¹ dan 9.0 m s⁻¹. Panjang gelombang di kawasan air cetek ialah 2 m. Hitungkan panjang gelombang di kawasan air dalam.
- 9. Rajah 8 menunjukkan graf sesaran melawan masa yang mewakili ayunan sebuah bandul.

Rajah 8

Berdasarkan graf sesaran melawan masa dalam Rajah 8. Jawab soalan berikut:

- (a) Apakah perubahan yang berlaku terhadap amplitud ayunan bandul?
- (b) Apakah fenomena yang terjadi kepada ayunan bandul tersebut?
- (c) Apakah sebab utama fenomena ini terjadi?
- (d) Bagaimanakah bandul dapat kekal berayun?

 Rajah 9 menunjukkan corak interferens yang terhasil dalam eksperimen interferens cahaya yang menggunakan cahaya berwarna.

Rajah 9

Jadual 1 menunjukkan warna cahaya yang digunakan dalam eksperimen itu dan nilai panjang gelombang. Lengkapkan Jadual 1 dengan memadankan warna cahaya dengan corak A, B dan C.

Iadual 1

)000000	
Warna	Panjang gelombang / nm	Corak interferens
Biru	400	
Hijau	550	
Merah	700	

Jelaskan jawapan anda.

11. Rajah 10 menunjukkan satu sistem komunikasi yang melibatkan penghantaran terus isyarat gelombang elektromagnet dari stesen pemancar ke stesen penerima. Jarak di antara dua stesen yang jauh dan bentuk Bumi menyebabkan stesen penerima tidak dapat menerima isyarat yang jelas secara terus dari pemancar. Anda dikehendaki memberi beberapa cadangan untuk mereka bentuk satu sistem komunikasi yang dapat menambah baik kualiti penghantaran isyarat.

Rajah 10

Terangkan cadangan anda berdasarkan aspek-aspek berikut: 🦇

- (a) jenis gelombang yang dipancarkan
- (b) frekuensi gelombang
- (c) kaedah yang membolehkan gelombang itu merambat melalui jarak yang lebih jauh
- (d) lokasi pemancar dan penerima

12. Kompleks Pendaratan Ikan LKIM ialah tempat nelayan melabuhkan kapal dan mendaratkan hasil tangkapan. Muara sungai menjadi pintu masuk untuk kapal-kapal nelayan ke Kompleks Pendaratan Ikan LKIM. Gambar foto 1 menunjukkan contoh muara sungai.

Gambar foto 1

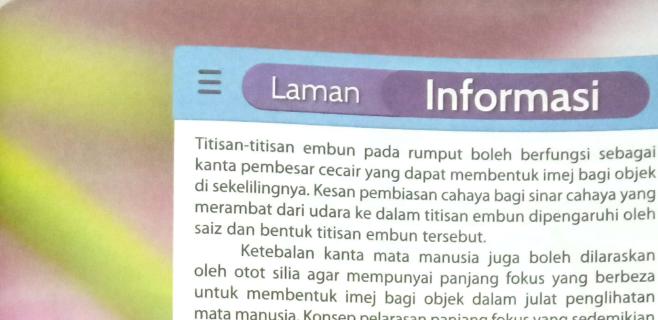
(Sumber: Image ©2019 TerraMetrics, Image ©2019 Maxar Technologies)

Andaikan diri anda sebagai jurutera yang berpengetahuan mengenai pantulan, pembiasan dan pembelauan gelombang. Anda dikehendaki mencadangkan ciri-ciri reka bentuk struktur binaan bagi memastikan kapal-kapal nelayan dapat melalui muara sungai dengan selamat. Anda diminta memberi cadangan reka bentuk struktur binaan di muara sungai berdasarkan aspek berikut:

- (a) struktur binaan yang dapat mengurangkan ketinggian ombak
- (b) ciri-ciri struktur binaan yang dapat mengurangkan kesan hakisan
- (c) kedalaman muara sungai bagi membolehkan kapal melalui muara dengan selamat
- 13. Dewan baharu sekolah anda telah dibekalkan dengan sistem siar raya yang terdiri daripada dua buah pembesar suara, sebuah mikrofon dan stesen kawalan yang terdiri daripada amplifier yang dilengkapkan slot USB dan DVD. Anda dikehendaki mencadangkan pemasangan sistem siar raya tersebut supaya suara guru dan bunyi dari video boleh didengar dengan jelas oleh para hadirin. Lakarkan dan terangkan cadangan anda berdasarkan aspek-aspek berikut:
 - (a) kedudukan pembesar suara
 - (b) jarak antara pembesar suara
 - (c) kedudukan mikrofon
 - (d) kedudukan stesen kawalan

Ed 6 Cahaya dan Optik

Apakah konsep dan prinsip yang berkaitan dengan cahaya dan optik?

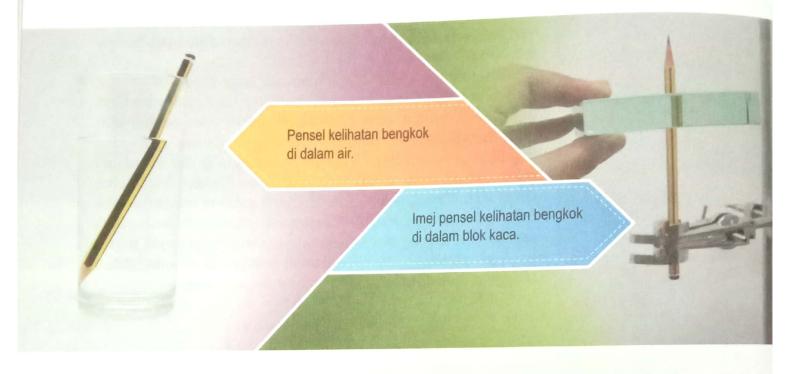

Bagaimanakah konsep cahaya dan optik diaplikasikan dalam kehidupan serta fenomena semula jadi?

Mengapakah gentian optik dan kanta bersaiz kecil digunakan dalam teknologi peralatan optik?

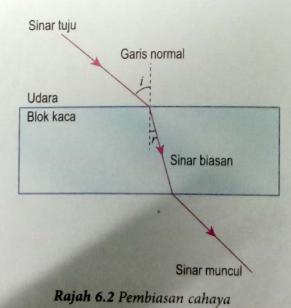
Marilah Kita Mempelajari

- 6.1 Pembiasan Cahaya
- 6.2 Pantulan dalam Penuh
- 6.3 Pembentukan Imej oleh Kanta
- 6.4 Formula Kanta Nipis
- 6.5 Peralatan Optik
- 6.6 Pembetukan Imej oleh Cermin Sfera

Ketebalan kanta mata manusia juga boleh dilaraskan oleh otot silia agar mempunyai panjang fokus yang berbeza untuk membentuk imej bagi objek dalam julat penglihatan mata manusia. Konsep pelarasan panjang fokus yang sedemikian diaplikasikan oleh para saintis dan jurutera untuk mencipta kanta kamera cecair di dalam telefon pintar. Panjang fokus kanta cecair ini boleh dilaraskan dengan menggunakan medan elektrik dalam sistem elektronik telefon pintar. Oleh itu, satu kanta cecair mampu menggantikan satu set kanta yang dipasang di dalam kamera telefon pintar. Penjimatan ruang ini membolehkan ketebalan keseluruhan telefon pintar dikurangkan.



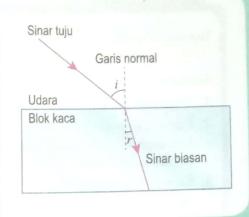
http://bit. ly/2FZDNxX


6.1 Pembiasan Cahaya

Perhatikan Rajah 6.1. Apakah yang menyebabkan fenomena tersebut?

Rajah 6.1 Fenomena pembiasan cahaya

Fenomena ini dikenali sebagai **pembiasan cahaya** yang berlaku disebabkan oleh perubahan halaju cahaya apabila merambat melalui medium yang berlainan ketumpatan optik seperti yang ditunjukkan dalam Rajah 6.2.



Ketumpatan optik tidak sama dengan ketumpatan yang didefinisikan sebagai jisim per unit isi padu.
Misalnya, ketumpatan minyak lebih rendah daripada air menyebabkan minyak terapung di atas permukaan air, tetapi ketumpatan optik minyak pula lebih tinggi daripada ketumpatan optik air.

Berdasarkan Rajah 6.3, sinar cahaya membengkok ke arah garis normal apabila cahaya merambat dari medium yang berketumpatan optik rendah (udara) ke medium yang berketumpatan optik tinggi (blok kaca). Hal ini kerana halaju cahaya berkurang ketika cahaya merambat dari medium yang kurang tumpat ke medium yang lebih tumpat. Oleh itu, sudut biasan, r adalah lebih kecil daripada sudut tuju, i.

Rajah 6.3 Pembiasan cahaya dari udara ke blok kaca (i > r)

Berdasarkan Rajah 6.4, sinar cahaya membengkok menjauhi garis normal apabila cahaya merambat dari medium yang berketumpatan optik tinggi (blok kaca) ke medium yang berketumpatan optik rendah (udara). Hal ini kerana halaju cahaya bertambah ketika cahaya merambat dari medium yang lebih tumpat ke medium yang kurang tumpat. Oleh itu, sudut biasan, r adalah lebih besar daripada sudut tuju, i.

Rajah 6.4 Pembiasan cahaya dari blok kaca ke udara (i < r)

Indeks Biasan

Indeks biasan, n menentukan darjah pembengkokan alur cahaya apabila cahaya merambat dari vakum ke suatu medium. Oleh itu, kita dapat mendefinisikan indeks biasan sebagai nisbah laju cahaya di dalam vakum kepada laju cahaya di dalam medium.

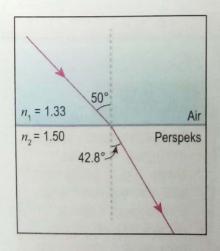
Indeks biasan,
$$n = \frac{\text{laju cahaya dalam vakum}}{\text{laju cahaya dalam medium}} = \frac{c}{v}$$
iaitu $c = 3.0 \times 10^8 \text{ m s}^{-1}$

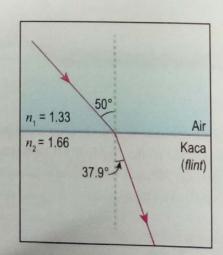
Fail INFO

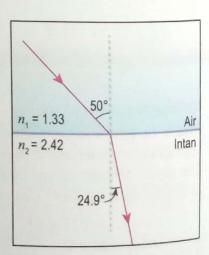
Apabila ketumpatan optik meningkat, nilai indeks biasan, n akan bertambah. Nilai n sentiasa lebih atau sama dengan 1. Nilai n bergantung pada panjang gelombang, λ cahaya yang digunakan. Perubahan suhu juga boleh mengubah nilai n suatu bahan.

Tujuan: Membandingkan indeks biasan bahan yang berbeza dan menghubungkaitkan indeks biasan bahan dengan ketumpatan optik bahan berkenaan

Arahan:

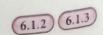

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Dapatkan maklumat dari sumber bacaan atau Internet mengenai indeks biasan untuk beberapa bahan yang berbeza seperti udara, air, minyak masak, ais, kaca, intan dan bahan-bahan lain.
- 3. Kemudian, bincangkan:
 - (a) Hubung kait indeks biasan bahan tersebut dengan ketumpatan optik bahan berkenaan.
 - (b) Apakah faktor fizik yang mempengaruhi nilai indeks biasan suatu bahan?
 - (c) Apakah bahan yang mempunyai nilai indeks biasan paling tinggi?
- 4. Persembahkan hasil perbincangan kumpulan anda.


Hukum Snell


Jadual 6.1 menunjukkan indeks biasan bagi beberapa medium. Rajah 6.5 pula menunjukkan perambatan sinar cahaya dari air ke dalam tiga medium yang berlainan.

Jadual 6.1 Indeks biasan bagi beberapa medium

Medium	Indeks biasan
Vakum dan udara	1.00
Minyak zaitun	1.46
Perspeks	1.50
Kaca (crown)	1.52
Kaca (flint)	1.66
Intan	2.42



Rajah 6.5 Perambatan sinar cahaya dari air ke dalam tiga medium yang berlainan

Berdasarkan Rajah 6.5, nilai $n_1 \sin \theta_1$ adalah sama dengan $n_2 \sin \theta_2$ bagi tiga keadaan itu. Menurut hukum pembiasan cahaya, apabila cahaya merambat antara dua medium: Menurut Sinar tuju, sinar biasan dan garis normal bertemu pada satu titik dan berada dalam satah

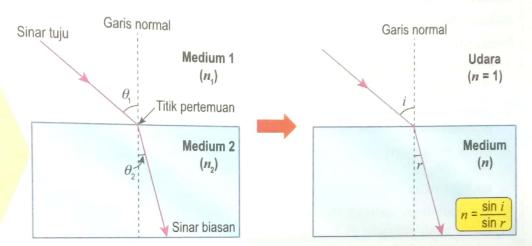
yang sama.

. Hukum Snell:

Apabila medium 1 ialah udara

 $(n_1 = 1)$ dan medium 2, $n_2 = n$

 $n = \frac{\sin i}{\sin r}$


i ialah sudut tuju dalam udara, r ialah sudut biasan dalam

medium 2

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
, iaitu n_1 ialah indeks biasan medium 1

maka, $\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$ $\frac{n_2}{\sin \theta_1}$ ialah indeks biasan medium 2 $\frac{n_2}{\sin \theta_1}$ ialah sudut tuju dalam medium 1

 $\theta_{_2}$ ialah sudut biasan dalam medium 2

Rajah 6.6 Hukum pembiasan cahaya

Perhatikan Rajah 6.7. Mengapakah Sudut biasan bergantung sinar cahaya membengkok apabila pada sudut tuju dan nilai Udara memasuki blok kaca? indeks biasan blok kaca. Blok kaca Udara Rajah 6.7 Pembengkokan sinar cahaya (6.1.4)

6.1

Inferens: Sudut biasan bergantung pada sudut tuju

Hipotesis: Semakin bertambah sudut tuju, i, semakin bertambah sudut biasan, r

Tujuan: Menentukan indeks biasan bagi blok kaca

Pemboleh ubah:

- (a) Dimanipulasikan: Sudut tuju, i
- (b) Bergerak balas: Sudut biasan, r
- (c) Dimalarkan: Indeks biasan blok kaca

Radas: Kotak sinar dengan plat celah tunggal, jangka sudut dan pembaris

Bahan: Blok kaca, kertas putih dan pensel

Prosedur:

- 1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.8 di atas sekeping kertas putih.
- 2. Lukis garis luar blok kaca itu pada kertas putih dan garis normal melalui titik O.
- 3. Lukis lima garis pada sudut tuju yang berbeza, $i = 20^{\circ}$, 30° , 40° , 50° dan 60° menggunakan sebuah jangka sudut untuk mewakili lima sinar tuju.
- **4.** Tujukan sinar cahaya dari kotak sinar pada garis, $i = 20^{\circ}$. Lukis sinar muncul PQ.
- **5.** Alihkan blok kaca dan lukis sinar biasan *OP*. Ukur sudut biasan, *r* dan rekodkan bacaan dalam Jadual 6.2.
- 6. Letakkan blok kaca semula. Ulangi langkah 4 dan 5 dengan sudut tuju, $i = 30^{\circ}$, 40° , 50° dan 60° .
- 7. Hitungkan nilai sin i dan sin r. Rekodkan nilai dalam jadual.

rajah 6.8 dengan

Kotak

sinar

Nota: Eksperimen ini juga boleh dijalankan dengan menggunakan perspeks.

Blok kaca

Keputusan:

Jadual 6.2

Sudut tuju, i / °	Sudut biasan, r / °	sin i	sin r
20			
30			
40			
50			
60			

Analisis data:

- 1. Plotkan graf r melawan i dan graf sin i melawan sin r pada kertas graf yang berlainan.
- 2. Hitungkan kecerunan graf sin i melawan sin r.
- 3. Nyatakan hubungan antara sudut tuju, i dengan sudut biasan, r apabila cahaya bergerak dari udara ke dalam blok kaca.

Jika penunjuk laser digunakan dalam eksperimen ini, perubahan susunan radas perlu dilakukan.

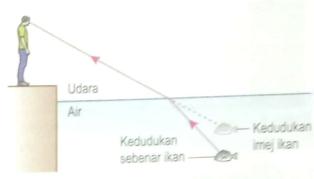
Video demonstrasi pembiasan sinar laser

http://bit. ly/2YIaO8M

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.


Perbincangan:

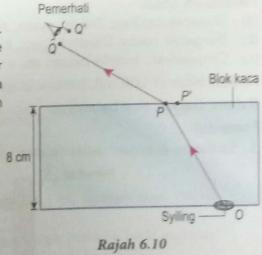
- 1. Apakah nilai indeks biasan bagi blok kaca?
- 2. Nyatakan satu langkah berjaga-jaga yang perlu diambil untuk meningkatkan kejituan bacaan dalam eksperimen ini.

Dalam Nyata dan Dalam Ketara

Perhatikan Rajah 6.9. Mengapakah kedudukan imej ikan kelihatan lebih dekat dengan permukaan air?

Situasi ini terjadi disebabkan oleh pembiasan cahaya. Apabila sinar cahaya dari ikan merambat dari air ke udara, cahaya dibiaskan menjauhi garis normal. Kesan pembiasan cahaya ini menyebabkan pemerhati melihat kedudukan imej ikan lebih dekat dengan permukaan air.

Rajah 6.9 Kesan pembiasan cahaya


KMK

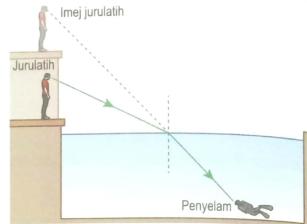
Tujuan: Melukis gambar rajah sinar untuk menunjukkan dalam nyata, H dan dalam ketara, h

Rajah 6.10 menunjukkan sekeping syiling yang diletakkan di bawah blok kaca dengan ketebalan 8.0 cm. Sinar OPQ ialah lintasan cahaya dari pusat syiling, O ke mata pemerhati. Anda dikehendaki melukis satu sinar cahaya lagi, OP'Q' dari titik O ke mata pemerhati. Anda boleh memuat turun dan mencetak Rajah 6.10 dalam laman sesawang yang diberi.

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Lukis dan panjangkan garis QP dan Q'P' ke dalam blok kaca sehingga kedua-dua garis itu bertemu.
- 3. Tandakan titik pertemuan itu sebagai titik X. X ialah kedudukan ketara bagi pusat syiling, iaitu imej bagi titik O yang disebabkan oleh pembiasan cahaya.
- 4. Lengkapkan rajah anda dengan melukis garis OP'.
- 5. Ukur:
- (a) dalam nyata, H, iaitu jarak dari O ke permukaan blok kaca.
 - (b) dalam ketara, h, iaitu jarak dari X ke permukaan blok kaca.
- 6. Hitungkan nilai $\frac{H}{h}$. Bandingkan nilai $\frac{H}{h}$ dengan indeks biasan blok kaca, n. Hubung kait dalam nyata, H, dalam ketara, h, dan indeks biasan blok kaca, n.

Muat turun Rajah 6.10


http://bit. hv/2Rb9GX9

Rajah 6.11 menunjukkan seorang jurulatih selam yang berada di tepi kolam melihat kedudukan penyelam lebih dekat dengan permukaan air. Rajah 6.12 menunjukkan seorang penyelam yang berada di dasar kolam melihat jurulatihnya berada lebih jauh daripadanya. Bolehkah anda jelaskan mengenai situasi tersebut?

Jurulatih Imej penyelam Penyelam **

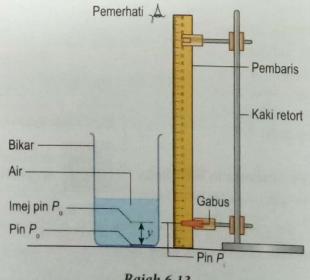
Rajah 6.11 Kedudukan imej penyelam dari sudut pandangan jurulatih

Rajah 6.12 Kedudukan imej jurulatih dari sudut pandangan penyelam

Inferens: Kedudukan suatu imej dipengaruhi oleh kedudukan objek dan indeks biasan medium berlainan

Hipotesis: Semakin bertambah dalam nyata suatu objek, semakin bertambah dalam ketara

Tujuan: Menentukan indeks biasan air menggunakan kaedah tanpa paralaks


Pemboleh ubah:

- (a) Dimanipulasikan: Dalam nyata, H
- (b) Bergerak balas: Dalam ketara, h
- (c) Dimalarkan: Indeks biasan air, n

Radas: Bikar (1 000 ml), pembaris dan kaki retort Bahan: Gabus, dua batang pin, pita selofan dan air

Prosedur:

1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.13.

Rajah 6.13

Fail INFO

Kaedah tanpa paralaks merupakan satu kaedah yang amat penting untuk menentukan kedudukan imej dengan tepat dalam eksperimen optik.

- 2. Lekatkan sebatang pin P_o dengan pita selofan pada dasar bikar itu.
- 2. Len dalam bikar sehingga kedalaman 6.0 cm. Kedalaman ini ialah dalam nyata, H.
- 4. Perhatikan imej pin Po dari bahagian atas permukaan air.
- 5. Laraskan kedudukan pin P secara menegak sehingga kelihatan segaris dengan imej pin P. p_{ada} paras ini, kedudukan pin P_{adalah} sama paras dengan imej pin P_{adalah} .
- 6. Ukur jarak y antara pin P dengan dasar bikar. Rekodkan bacaan dalam Jadual 6.3.
- 7. Ulangi eksperimen ini dengan mengubah dalam nyata, H = 7.0 cm, 8.0 cm, 9.0 cm

Keputusan:

Jadual 6.3

Dalam nyata, H / cm	y/cm	Dalam ketara, h / cm
6.0		
7.0		
8.0		
9.0		
10.0		

Analisis data:

- 1. Tentukan nilai dalam ketara, h yang bersamaan dengan jarak antara pin P_i dengan permukaan air menggunakan rumus, h = (H - y).
- 2. Plotkan graf H melawan h pada kertas graf.
- 3. Tentukan kecerunan graf.
- 4. Hubung kait dalam nyata, dalam ketara dan indeks biasan air.
- 5. Nyatakan nilai indeks biasan air.

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

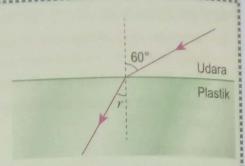
Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

- 1. Jika air digantikan dengan minyak masak dalam eksperimen ini, apakah akan terjadi
- 2. Nyatakan satu langkah berjaga-jaga yang perlu diambil untuk memperbaiki kejituan keputusan eksperimen ini.
- 3. Bincangkan kelebihan kaedah tanpa paralaks berbanding dengan kaedah yang digunakan dalam Eksperimen 6.1 untuk menentukan indeks biasan suatu bahan.

Berdasarkan eksperimen di atas, hubungan antara indeks biasan suatu bahan lut sinar, n dengan dalam nyata, H dan dalam ketara, h ialah:

$$n = \frac{\text{dalam nyata}}{\text{dalam ketara}} = \frac{H}{h}$$


Menyelesaikan Masalah yang Berkaitan dengan Pembiasan Cahaya

Contoh 1

Rajah 6.14 menunjukkan satu sinar cahaya merambat dari udara ke dalam bahan plastik pada sudut 60°. Indeks biasan plastik ialah 1.49.

Hitungkan:

- (a) sudut biasan, r.
- (b) kelajuan cahaya dalam plastik.

Rajah 6.14

Penyelesaian:

(a)
$$n = \frac{\sin i}{\sin r}$$
$$\sin r = \frac{\sin i}{n}$$
$$= \frac{\sin 60^{\circ}}{1.49}$$
$$r = \sin^{-1} \left(\frac{\sin 60^{\circ}}{1.49}\right)$$
$$= 35.54^{\circ}$$

(b)
$$n = \frac{c}{v}$$

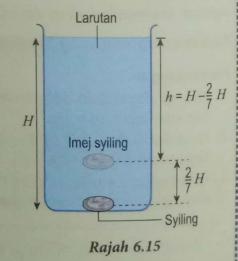
 $v = \frac{c}{n}$
 $= \frac{3.0 \times 10^8}{1.49}$
 $= 2.01 \times 10^8 \text{ m s}^{-1}$

Contoh 2

Apabila sekeping syiling diperhatikan di dalam sebuah bikar yang mengandungi suatu larutan, imej syiling kelihatan pada satu ketinggian yang sama dengan $\frac{2}{7}$ kedalaman larutan itu. Berapakah indeks biasan larutan itu?

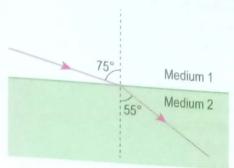
Penyelesaian:

Berdasarkan Rajah 6.15,


Dalam ketara,
$$h = H - \frac{2}{7}H$$
$$= \frac{5}{7}H$$

Indeks biasan larutan,
$$n = \frac{H}{h}$$

$$= \frac{\frac{H}{5}}{\frac{7}{7}H}$$


$$= \frac{7}{5}$$

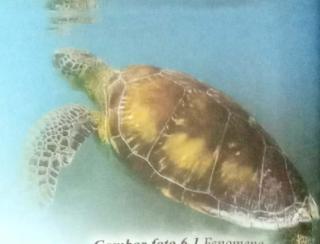
$$= 1.4$$

I. Rajah 6.16 menunjukkan lintasan cahaya yang merambat dari medium 1 ke medium 2.

6.1

Rajah 6.16

- (a) Tuliskan satu persamaan bagi menghubungkaitkan cahaya yang merambat antara
- (b) Tentukan indeks biasan bagi medium 2 jika laju cahaya di dalam medium 1 ialah
- (c) Berapakah laju cahaya di dalam medium 2?
- 2. Rajah 6.17 menunjukkan sebuah tangki diisi dengan minyak setinggi 3 m yang mempunyai indeks biasan 1.38. Berapakah dalam ketara tangki tersebut yang dilihat oleh pemerhati?

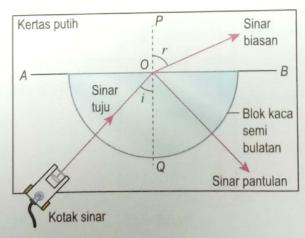


Pantulan Dalam Penuh

Gambar foto 6.1 menunjukkan seekor penyu di bawah permukaan air. Imej pantulan penyu dapat dilihat pada sempadan air dengan udara. Mengapakah hal ini terjadi?

Fenomena ini dikenali sebagai pantulan dalam penuh cahaya. Pantulan dalam penuh hanya berlaku apabila cahaya merambat dari medium berketumpatan optik tinggi ke medium berketumpatan optik rendah.

Gambar foto 6.1 Fenomena pantulan dalam penuh


Tujuan: Memerhatikan fenomena pantulan dalam penuh dan menentukan sudut genting kaca

Radas: Blok kaca semi bulatan, kotak sinar, bekalan kuasa dan jangka sudut

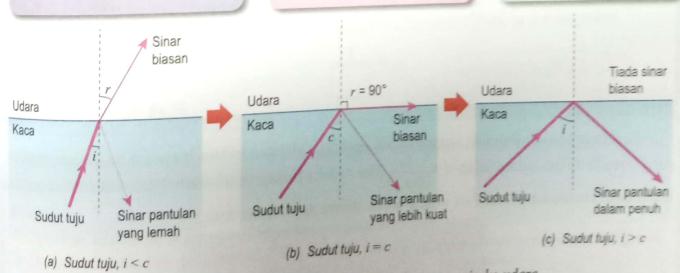
Bahan: Kertas putih

Arahan:

- 1. Lukiskan garis lurus AB dan garis lurus yang berserenjang PQ di atas sekeping kertas putih.
- 2. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.18. Titik O ialah pusat blok kaca semi bulatan itu.

Rajah 6.18

- 3. Hidupkan kotak sinar supaya satu sinar cahaya ditujukan sepanjang QO. Perhatikan sinar biasan dalam udara.
- 4. Alihkan kotak sinar supaya satu sinar cahaya dituju ke titik O dengan sudut tuju, i yang kecil. Perhatikan sinar biasan dalam udara dan sinar pantulan.
- 5. Ulangi langkah 4 dengan sudut tuju, i yang semakin besar sehingga sudut tuju, i hampir 90°.
- 6. Laraskan kedudukan kotak sinar supaya sinar biasan merambat sepanjang OB, iaitu sudut biasan, $r = 90^{\circ}$. Tandakan lintasan sinar tuju.


- 7. Alihkan blok kaca. Lukis sinar tuju dan ukur sudut tuju. Sudut tuju ini dikenali sebagai sudut genting kaca, c.
- 8. Letakkan blok kaca semula di kedudukan asalnya. Perhatikan sinar biasan dan sinar pantulan apabila:
 - (a) sudut tuju lebih kecil daripada sudut genting, dan
 - (b) sudut tuju lebih besar daripada sudut genting.

perbincangan:

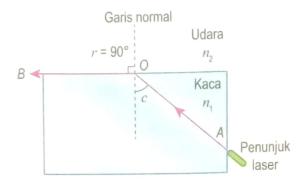
- 1. Berapakah sudut genting kaca?
- 2. Huraikan perambatan sinar cahaya melalui blok kaca apabila sudut tuju lebih kecil daripada sudut genting.
- 3. Apakah perubahan yang berlaku kepada perambatan sinar cahaya melalui blok kaca apabila
 - (a) sudut tuju lebih kecil daripada sudut genting?
 - (b) sudut tuju lebih besar daripada sudut genting?

Rajah 6.19 menunjukkan perambatan sinar cahaya dari kaca (ketumpatan optik tinggi) menuju ke udara (ketumpatan optik rendah) bagi tiga sudut tuju yang berlainan.

- 1) Apabila sudut tuju kurang daripada sudut genting, sinar dibias menjauhi garis normal. Sinar pantulan yang lemah juga dapat dikesan.
- 2 Apabila sudut tuju sama dengan sudut genting, sinar biasan merambat sepanjang sempadan permukaan kaca dan udara. Sinar pantulan kelihatan lebih terang.
- 3 Apabila sudut tuju melebihi sudut genting, tiada sinar biasan. Cahaya dipantulkan sepenuhnya ke dalam kaca

Rajah 6.19 Perambatan sinar cahaya dari kaca menuju ke udara

Fenomena pantulan dalam penuh berlaku apabila cahaya merambat dari medium yang berketumpatan optik tinggi ke medium yang berketumpatan optik rendah, dengan sudut tuju lebih besar daripada sudut genting. Sudut genting, c ialah sudut tuju dalam medium yang berketumpatan optik berketumpatan optik tinggi apabila sudut biasan dalam medium yang berketumpatan optik rendah sama dengan 90°. Adakah sudut genting suatu bahan bergantung pada indeks biasan bahan tersebut?



Tujuan: Membincangkan hubung kait antara sudut genting dengan indeks biasan

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Teliti Rajah 6.20 yang menunjukkan perambatan sinar cahaya dari kaca ke udara dengan sudut tuju, i sama dengan sudut genting, c.

Rajah 6.20 Hubung kait antara sudut genting dengan indeks biasan

- 3. Bincang dan lengkapkan pernyataan berikut.
 - (a) Hukum Snell bagi perambatan sinar cahaya dari kaca ke udara ialah:

(b) Nilai $\theta_1 = c$, $\theta_2 =$ _____ dan $n_2 =$ _____. Dengan itu, $n_1 \sin$ ____ = $n_2 \sin$ _____.

$$n_1 = \frac{1}{n_1}$$

Secara umum, hubungan antara sudut genting, c dengan indeks biasan, n bagi suatu medium yang berada dalam udara ialah $n = \frac{1}{\sin c}$. Jika indeks biasan intan ialah 2.42, maka sudut genting intan bagi sempadan intan dan udara boleh dikira seperti berikut:

$$\sin c = \frac{1}{2.42}$$
= 0.4132
$$c = \sin^{-1} (0.4132)$$
= 24.4°

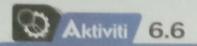
Sudut genting bagi intan, c ialah 24.4°.

Sudut genting suatu medium bergantung pada ketumpatan optik medium itu. Semakin tinggi indeks biasan medium, semakin kecil sudut genting medium tersebut.

Gambar foto 6.2 Pemandangan pada waktu malam di River of Life and Blue Pool, Masjid Jamek, Kuala Lumpur

Keindahan lampu-lampu hiasan yang ditunjukkan dalam Gambar foto 6.2 ialah hasil daripada aplikasi pantulan dalam penuh. Bolehkah anda nyatakan fenomena lain yang melibatkan pantulan dalam penuh?

Aktiviti 6.5

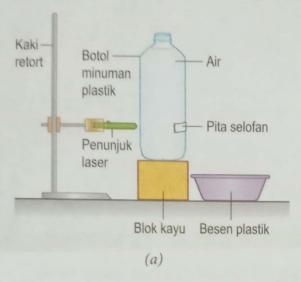

Tujuan: Mengumpul maklumat dan membincangkan fenomena semula jadi yang melibatkan pantulan dalam penuh

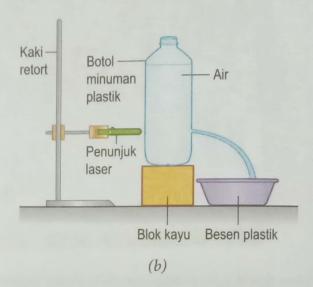
Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Dapatkan maklumat dari pelbagai sumber bacaan dan carian laman sesawang mengenai:
 - (a) fenomena semula jadi yang melibatkan pantulan dalam penuh.
 - (b) aplikasi pantulan dalam penuh dalam kehidupan harian.
- 3. Persembahkan hasil dapatan anda dalam bentuk peta pemikiran yang sesuai.

Tujuan: Memerhatikan fenomena pantulan dalam penuh di dalam aliran air

Radas: Botol minuman plastik 1.5 liter, besen plastik, penunjuk laser, blok kayu dan


kaki retort


Bahan: Air dan pita selofan

Arahan:

1. Tebuk satu lubang di tepi botol plastik. Kemudian, tutup lubang itu dengan pita selofan.

2. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.21(a).

Rajah 6.21

- 3. Jalankan aktiviti ini dalam keadaan makmal yang gelap untuk pemerhatian yang lebih jelas.
- 4. Buka pita selofan supaya air mengalir keluar dari lubang ke dalam besen.
- Tujukan alur cahaya laser ke arah lubang itu seperti yang ditunjukkan dalam Rajah 6.21(b). Perhatikan warna aliran air tersebut.
- 6. Catatkan pemerhatian anda.

Perbincangan:

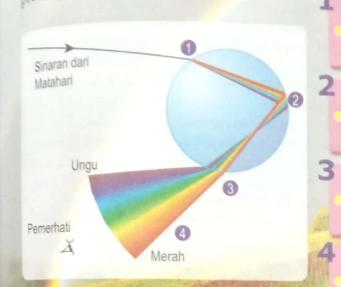
Apakah akan berlaku jika aliran air digantikan dengan aliran minyak?

Video demonstrasi pantulan dalam penuh

http://bit. ly/2Gju1pH

Nota: Aktiviti ini juga boleh dijalankan dengan menggunakan kit gentian optik.

Berdasarkan Aktiviti 6.6, sinar laser yang masuk ke dalam aliran air mengalami pantulan dalam penuh yang berulang kali sehingga keluar dari hujung aliran air. Keadaan ini menunjukkan aliran air berfungsi sebagai paip alur cahaya yang boleh membawa alur cahaya laser dari satu hujung ke hujung yang satu lagi walaupun aliran air itu melengkung.


Jika aliran air digantikan dengan aliran minyak, alur cahaya akan mengalami lebih banyak kali pantulan dalam penuh semasa merambat melalui aliran minyak itu. Hal ini kerana indeks biasan minyak lebih besar daripada indeks biasan air. Sudut genting minyak lebih kecil daripada sudut genting air.

Fenomena Semula Jadi Pantulan Dalam Penuh dalam Kehidupan Harian

pembentukan pelangi

pembentukan pelangi ialah satu fenomena yang disebabkan oleh pembiasan, penyebaran dan pantulan dalam penuh apabila cahaya melalui titisan air dalam udara. Rajah 6.22 menunjukkan proses pembentukan pelangi.

Apabila cahaya putih daripada matahari memasuki titisan air, cahaya itu mengalami pembiasan dan penyebaran kepada warna-warna yang berbeza.

Semua warna yang berbeza itu mengalami pantulan dalam penuh pada permukaan dalam titisan air.

Sinar cahaya yang dipantulkan mengalami pembiasan dan penyebaran sekali lagi apabila bergerak dari air ke udara.

Warna pelangi dilihat oleh pemerhati.

Rajah 6.22 Proses pembentukan pelangi

Logamaya

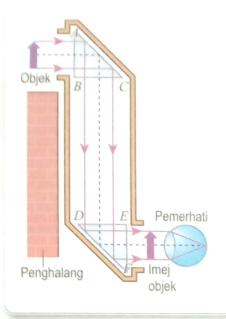
Pada hari yang panas dan cerah, seorang pemandu kereta melihat imej lopak air yang samar di permukaan jalan raya di hadapannya. Apabila beliau menghampiri lopak air tersebut, beliau mendapati lopak air itu sebenarnya tidak wujud. Fenomena semula jadi ini dikenali sebagai logamaya yang disebabkan oleh pembiasan dan pantulan dalam penuh cahaya. Rajah 6.23 menunjukkan proses pembentukan logamaya.

Udara di atas jalan raya terdiri daripada lapisan-lapisan dengan ketumpatan optik yang berlainan. Lapisan udara di permukaan jalan raya lebih panas daripada lapisan udara di atas. Lapisan udara panas mempunyai ketumpatan optik yang lebih kecil daripada udara sejuk.

Cahaya yang merambat dari lapisan atas ke lapisan bawah akan dibias secara beransur-ansur menjauhi garis normal. Apabila sudut tuju lebih besar daripada sudut genting udara, pantulan dalam penuh akan berlaku.

Imej awan

Sinar pantulan cahaya mengalami pembiasan secara beransur-ansur mendekati garis normal dan sampai ke mata pemerhati. Pemerhati akan melihat imej awan sebagai lopak air di permukaan jalan raya.


Rajah 6.23 Proses pembentukan logamaya

3

Aplikasi Pantulan Dalam Penuh dalam Kehidupan Harian

Periskop berprisma

- Digunakan untuk melihat objek di sebalik penghalang.
- Terdiri daripada dua buah prisma bersudut tegak yang dipasang pada dua hujung tiub yang panjang.
- Sinar cahaya dari objek menuju secara normal ke sisi AB prisma atas melalui bukaan periskop. Sinar cahaya sampai ke permukaan AC tanpa pembiasan. Sudut tuju ialah 45° dan lebih besar daripada sudut genting prisma, iaitu 42°. Maka, pantulan dalam penuh berlaku di sisi AC dan cahaya dipantulkan ke bawah.
- Sinar cahaya yang dipantulkan merambat secara normal ke sisi DE prisma bawah. Sekali lagi, sinar cahaya mengalami pantulan dalam penuh di sisi DF. Akhirnya, sinar cahaya keluar tanpa pembiasan di sisi EF dan masuk ke mata pemerhati. Imej yang terhasil adalah tegak dan sama saiz dengan objek.

Gentian optik

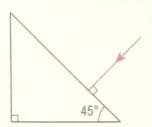
- Banyak digunakan dalam bidang telekomunikasi dan perubatan.
- Terdiri daripada gentian plastik atau kaca yang tulen.
- Teras dalam yang mempunyai indeks biasan yang tinggi dibalut oleh penyalut dengan indeks biasan yang rendah.
- Isyarat cahaya yang memasuki satu hujung gentian optik akan mengalami pantulan dalam penuh berturut-turut di dalam teras sehingga sampai ke hujung yang satu lagi. Dengan ini, maklumat dapat dihantar dengan pantas dan bebas daripada gangguan isyarat elektrik.

Pemantul mata jalan

- Digunakan untuk tujuan keselamatan pengguna jalan raya pada waktu malam.
- Sinar cahaya daripada lampu kereta yang memasuki pemantul ini akan mengalami pantulan dalam penuh pada permukaan belakang pemantul.

KERJAYA

Doktor menggunakan endoskop untuk melihat dan memeriksa bahagian dalam tubuh manusia. Jurutera pula menggunakan gentian optik untuk membuat pemeriksaan dalam mesin kompleks. Pakar komunikasi menggunakan gentian optik untuk penghantaran data dengan pantas.


Rajah 6.24 Aplikasi pantulan dalam penuh dalam kehidupan harian

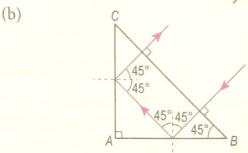
Menyelesaikan Masalah yang Melibatkan Pantulan Dalam Penuh

Rajah 6.25 menunjukkan satu sinar cahaya merambat dari udara ke prisma yang mempunyai indeks biasan 1.49.

- (a) Hitungkan sudut genting prisma.
- (b) Lengkapkan lintasan sinar cahaya sehingga cahaya keluar ke udara sekali lagi.

Rajah 6.25

Penyelesaian:

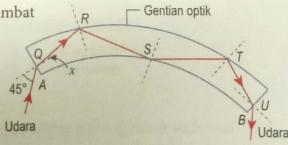

(a)
$$\sin c = \frac{1}{n}$$

$$= \frac{1}{1.49}$$

$$c = \sin^{-1}\left(\frac{1}{1.49}\right)$$

$$= 42.2^{\circ}$$

Sudut genting prisma, c ialah 42.2°.


Rajah 6.26

Rajah 6.26, sudut tuju ($i = 45^{\circ}$) lebih besar daripada sudut genting ($c = 42.2^{\circ}$) di sempadan AB dan AC. Pantulan dalam penuh berlaku dan sinar cahaya keluar dari sempadan BC secara normal.

Contoh 2

Rajah 6.27 menunjukkan lintasan sinar cahaya merambat melalui gentian optik dari hujung A ke hujung B.

- (a) Terangkan perubahan arah sinar cahaya di titik Q, R, S, T dan U.
- (b) Jika indeks biasan gentian optik ialah 1.51, tentukan nilai sudut x.
- (c) Mengapakah bahan gentian optik mesti memiliki ketulenan yang tinggi?

Rajah 6.27

Penyelesaian:

(a) Di titik Q, pembiasan cahaya mendekati garis normal. Di titik R, T dan U, pantulan dalam penuh berlaku. Di titik S, pembiasan cahaya menjauhi garis normal.

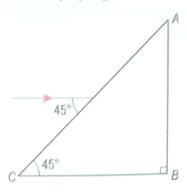
(b)
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

 $1 \times \sin 45^\circ = 1.51 \sin x$

$$\sin 45^\circ = 1.51 \sin x$$

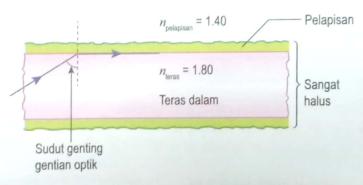
 $\sin x = 1 \times \frac{\sin 45^\circ}{1.51}$

$$= 0.468$$


$$x = \sin^{-1}(0.468)$$

(c) Ketulenan bahan gentian optik memastikan sudut genting sepanjang gentian adalah konsisten. Semua isyarat yang memasuki gentian akan mengalami pantulan dalam penuh.

Latihan Formatif


6.2

Rajah 6.28 menunjukkan lintasan cahaya yang merambat dari udara ke prisma.

Rajah 6.28

- (a) Tentukan sudut biasan sinar cahaya dalam prisma. Indeks biasan prisma ialah 1.50.
- (b) Adakah sinar cahaya itu akan mengalami pantulan dalam penuh pada sisi prisma AB? Terangkan jawapan anda.
- 2. Rajah 6.29 menunjukkan gentian optik yang terdiri daripada teras dalam yang mempunyai indeks biasan tinggi dilapisi dengan bahan indeks biasan rendah.

Rajah 6.29

- (a) Tentukan sudut genting gentian optik ini.
- (b) Apakah kelebihan saiz gentian optik yang sangat halus? 🧠

Pembentukan Imej Oleh Kanta

Kanta merupakan sekeping bahan lut sinar seperti kaca, perspeks atau plastik dan mempunyai dua permukaan dengan sekurang-kurangnya satu permukaan melengkung. Terdapat dua jenis utama kanta, iaitu kanta cembung dan kanta cekung seperti yang ditunjukkan dalam Rajah 6.30.

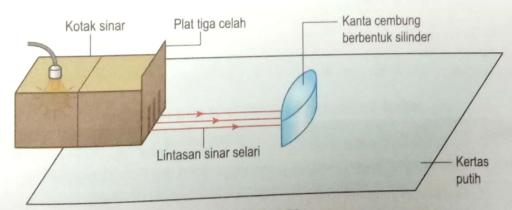
EduwebTV: Kanta

http://bit. ly/2L8j8vH

(a) Kanta cembung (b) Kanta cekung

Rajah 6.30 Jenis-jenis kanta

Aktiviti 6.7


Tujuan: Menunjukkan kanta cembung sebagai kanta penumpu dan kanta cekung sebagai kanta pencapah

Radas: Kanta cembung, kanta cekung, kotak sinar, bekalan kuasa, plat tiga celah, pensel dan pembaris

Bahan: Kertas putih

Arahan:

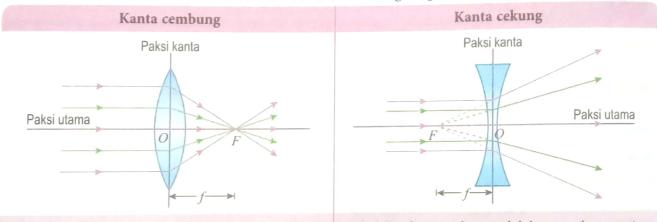
1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.31.

Rajah 6.31

- 2. Surih bentuk kanta cembung pada kertas putih.
- 3. Tujukan tiga alur cahaya selari dari kotak sinar ke arah kanta cembung. Perhatikan alur-alur cahaya selepas melalui kanta cembung dan catatkan pemerhatian anda.
- 4. Buat dua tanda pada setiap lintasan cahaya sebelum dan selepas melalui kanta itu. Alihkan kanta cembung dan lukis gambar rajah sinar untuk lintasan sinar cahaya sebelum dan selepas cahaya melalui kanta cembung itu.
- 5. Ukur jarak di antara pusat kanta, P dengan titik tumpuan tiga alur cahaya, F. Rekodkan bacaan anda.
- 6. Ulangi langkah 2 dengan menggantikan kanta cembung dengan kanta cekung. Perhatikan alur-alur cahaya selepas melalui kanta cekung dan catatkan pemerhatian anda.

- 7. Lukis gambar rajah sinar untuk lintasan cahaya sebelum dan selepas melalui kanta cekung itu. Tentukan titik dari mana alur-alur cahaya kelihatan mencapah, F.
- 8. Ukur jarak di antara pusat kanta, P dengan titik F. Rekodkan bacaan anda.

Perbincangan:


Apakah yang berlaku kepada tiga alur cahaya apabila melalui:

(a) kanta cembung, dan

(b) kanta cekung?

Aktiviti di atas menunjukkan bahawa sinar cahaya selari yang melalui kanta cembung akan menumpu kepada satu **titik fokus**, *F*. Oleh itu, kanta cembung dikenali sebagai **kanta penumpu**. Sebaliknya, sinar cahaya selari yang melalui kanta cekung kelihatan seolah-olah mencapah dari satu titik fokus, *F*. Oleh itu, kanta cekung dikenali sebagai **kanta pencapah**. Jadual 6.4 menunjukkan perbezaan antara kanta cembung dengan kanta cekung.

Jadual 6.4 Perbezaan antara kanta cembung dengan kanta cekung

Titik fokus kanta cembung adalah **nyata** kerana sinar cahaya yang dibias menumpu pada titik itu. Oleh itu, panjang fokus, *f* dikatakan **positif**.

Titik fokus kanta cekung adalah **maya** kerana sinar biasan seolah-olah mencapah dari titik itu. Oleh itu, panjang fokus, *f* dikatakan **negatif**.

Jadual 6.5 Penerangan istilah optik yang digunakan

Istilah Optik	Penerangan
Pusat optik, O	Titik di pusat kanta. Sinar cahaya yang melalui pusat optik tidak dibiaskan.
Paksi utama	Garis lurus yang menerusi pusat optik suatu kanta dan bersambung dengan pusat-pusat kelengkungan dua permukaan kanta itu.
Paksi kanta	Garis lurus yang menerusi pusat optik dan berserenjang dengan paksi utama.
Titik fokus, F	 Titik yang terletak pada paksi utama kanta. Untuk kanta cembung, sinar cahaya yang selari dengan paksi utama akan menumpu pada titik ini selepas melalui kanta Untuk kanta cekung, sinar cahaya yang selari dengan paksi utama seolah-olah mencapah dari titik ini selepas melalui kanta
Jarak objek, u	Jarak di antara objek dengan pusat optik kanta
Jarak imej, v	Jarak di antara imej dengan pusat optik kanta
Panjang fokus, f	Jarak di antara titik fokus, F dengan pusat optik, O suatu kanta

panjang Fokus bagi Kanta Cembung

Kanta cembung dengan ketebalan yang berlainan mempunyai panjang fokus yang berlainan.

Tujuan: Memerhati imej nyata dan menganggar panjang fokus bagi suatu kanta cembung menggunakan objek jauh

Radas: Kanta cembung, pembaris meter, pemegang kanta dan skrin putih

Arahan:

- 1, Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.32.
- 2. Letakkan kanta cembung pada pemegang kanta dan halakannya ke tingkap yang terbuka.

Rajah 6.32

- 3. Letakkan skrin putih di belakang kanta dan laraskan kedudukannya mendekati atau menjauhi kanta sehingga suatu imej yang tajam terbentuk pada skrin.
- 4. Ukur panjang fokus kanta, iaitu jarak di antara pusat optik kanta cembung dengan skrin. Rekodkan bacaan anda.

Perbincangan:

Mengapakah aktiviti di atas tidak sesuai digunakan untuk menganggar panjang fokus kanta cekung?

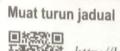
Kedudukan Imej dan Ciri-ciri Imej yang Dibentuk oleh Kanta

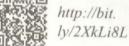
Kedudukan imej dan ciri-ciri imej yang dibentuk oleh kanta cembung dan kanta cekung boleh ditentukan dengan kaedah melukis gambar rajah sinar. Terdapat tiga sinar cahaya utama yang boleh dilukis untuk menentukan kedudukan imej dan ciri-ciri imej. Teliti Jadual 6.6 yang menerangkan tiga sinar cahaya tersebut.

Jadual 6.6 Sinar cahaya utama dalam melukis gambar rajah sinar

Kanta Cekung Kanta Cembung 1. Sinar yang menuju pusat optik merambat pada 1. Sinar yang menuju pusat optik merambat pada garis lurus melalui pusat optik tanpa dibiaskan. garis lurus melalui pusat optik tanpa dibiaskan. 2. Sinar yang selari dengan paksi utama terbias 2. Sinar yang selari dengan paksi utama terbias dan seolah-olah dari titik fokus, F. dan melalui titik fokus, F. 3. Sinar yang melalui titik fokus, F terbias selari 3. Sinar yang menuju titik fokus, F terbias selari dengan paksi utama. dengan paksi utama.

Tujuan: Menentukan kedudukan imej dan ciri-ciri imej yang dibentuk oleh kanta cembung dan kanta cekung bagi jarak objek yang berbeza


Radas: Kanta cembung dengan panjang fokus, f = 10 cm, kanta cekung dengan panjang fokus, f = -10 cm, kotak sinar dengan kertas lut sinar bertanda anak panah sebagai objek, bekalan kuasa, pemegang kanta, skrin putih dan pembaris meter


Bahan: Kertas graf

A Kanta cembung

Arahan:

1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.33.

Rajah 6.33

- 2. Letakkan kanta cembung supaya jarak objek, u = 30.0 cm, iaitu u > 2f. Laraskan kedudukan skrin sehingga satu imej anak panah yang tajam dibentuk pada skrin.
- 3. Perhatikan imej yang terbentuk pada skrin dan catatkan ciri-cirinya dalam jadual. Anda boleh memuat turun dan mencetak jadual tersebut dari laman sesawang yang diberi.
- 4. Pilih skala yang sesuai dan lukis gambar rajah sinar bagi kanta cembung untuk $f=10.0~{
 m cm}$ dan u = 30.0 cm di atas sekeping kertas graf. Anda boleh imbas QR code yang diberi untuk langkah-langkah melukis gambar rajah sinar yang lengkap.
- 5. Tentukan kedudukan imej dan catat dalam jadual yang dimuat turun.
- 6. Ulangi langkah 2 hingga 5 untuk nilai u = 20.0 cm, 15.0 cm dan 8.0 cm.

B Kanta cekung

Arahan:

- 1. Pegang kanta cekung pada jarak objek, u = 10.0 cm, 15.0 cm dan 20.0 cm di hadapan mata anda dan lihat tulisan dalam buku teks Fizik anda melalui kanta cekung itu. Catatkan ciri-ciri imej yang anda lihat dalam jadual yang dimuat turun.
- 2. Lukis gambar rajah sinar bagi kanta cekung untuk f = -10.0 cm dan u = 10.0 cm, 15.0 cm dan 20.0 cm di atas sekeping kertas graf.

Perbincangan:

- 1. Nyatakan kedudukan kanta cembung yang membentuk imej nyata dan imej maya.
- 2. Apakah ciri sepunya bagi imej-imej nyata yang dibentuk oleh kanta cembung?
- 3. Apakah ciri-ciri imej yang dibentuk oleh kanta cekung?

Jadual 6.7 dan Jadual 6.8 menunjukkan gambar rajah sinar serta ciri imej masing-masing untuk kanta cembung dan kanta cekung.

Jadual 6.7 Pembentukan imej oleh kanta cembung

Kedudukan objek	Gambar rajah sinar	Kedudukan imej	Ciri imej
Objek di infiniti	F	 Jarak imej: v = f Imej di F 	NyataSongsangDiperkecil
Objek O lebih jauh daripada 2F (u > 2f)	O F 2F 2F I	 Jarak imej: f < v < 2f Imej di antara F dengan 2F 	NyataSongsangDiperkecil
Objek O pada $2F$ $(u = 2f)$	2F F	 Jarak imej: v = 2f Imej di 2F 	NyataSongsangSama saizdengan objek
Objek O di antara F dengan 2F (f < u < 2f)	2F F	 Jarak imej: v > 2f Imej lebih jauh daripada 2F 	NyataSongsangDiperbesar
Objek O pada F $(u = f)$	F 2F	• Imej di infiniti	Maya Tegak Diperbesar
Objek O di antara F dengan pusat optik $(u < f)$	I OF F	• Jarak imej: v > u	MayaTegakDiperbesar

Jadual 6.8 Pembentukan imej oleh kanta c

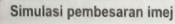
. L - shigh		the oten kanta cekung	
Kedudukan objek	Gambar rajah sinar	Kedudukan imej	Ciri imej
Objek O lebih jauh daripada $2F$ $(u > 2f)$	Q 2F F	 Di antara pusat optik dengan titik fokus Jarak imej: v < f 	MayaTegakDiperkecil
Objek O di antara F dengan pusat optik $(u < f)$	2F F 1	 Di antara pusat optik dengan titik fokus Jarak imej: v < f 	Maya Tegak Diperkecil

Pembesaran Linear

Perhatikan Gambar foto 6.3. Apabila suatu objek dilihat melalui kanta pembesar pada jarak yang kurang daripada panjang fokusnya, imej yang terbentuk diperbesar. Saiz imej yang dibentuk oleh suatu kanta cembung bergantung pada kedudukan objek.

Gambar foto 6.3 Imej yang diperbesar melalui kanta pembesar

Tujuan: Menjana idea pembesaran imej dengan bantuan gambar rajah

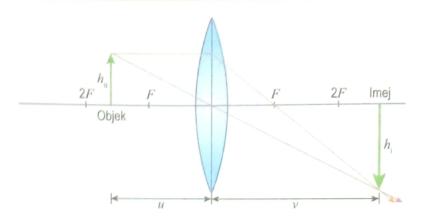

Arahan:

- 1. Jalankan aktiviti ini secara berpasangan.
- 2. Layari laman sesawang yang diberi tentang simulasi pembesaran imej.
- 3. Pilih suatu ketinggian objek yang sesuai. Mula dengan objek itu di kedudukan yang jauh dari kanta cembung.
- 4. Gerakkan objek itu dengan perlahan-lahan mendekati kanta. Perhatikan bagaimana kedudukan dan saiz imej berubah.
- 5. Lakarkan gambar rajah sinar bagi keadaan berikut:
 - (a) Saiz imej lebih kecil daripada saiz objek.
 - (b) Saiz imej lebih besar daripada saiz objek.

Perbincangan:

- 1. Kedudukan kanta cembung yang manakah membentuk
 - (a) imej yang diperbesarkan?
 - (b) imej yang diperkecilkan?
- 2. Apakah hubungan antara ketinggian imej, ketinggian objek, jarak imej dengan jarak objek?

http://bit. ly/2XfKySk


http://bit. lv/2Ugbn7J

Aktiviti 6.10 menunjukkan saiz imej yang terbentuk oleh suatu kanta bergantung pada kedudukan objek dari pusat kanta. Perbandingan antara saiz imej dengan saiz objek dibuat berdasarkan nisbah ketinggian imej kepada ketinggian objek tersebut. Nisbah tersebut dikenali sebagai **pembesaran linear**, *m*.

Pembesaran linear, $m = \frac{\text{ketinggian imej, } h_i}{\text{ketinggian objek, } h_o}$

Rajah 6.34 Pembentukan imej oleh kanta cembung

Berdasarkan Rajah 6.34, nisbah ketinggian imej kepada ketinggian objek juga sama dengan nisbah jarak imej kepada jarak objek.

Pembesaran linear, $m = \frac{\text{jarak imej, } v}{\text{jarak objek, } u}$

Oleh itu, pembesaran linear boleh dirumuskan sebagai,

 $m = \frac{h_i}{h_o} = \frac{v}{u}$, iaitu h_i = ketinggian imej h_o = ketinggian objek v = jarak imej u = jarak objek

Fail INFO

Pembesaran linear, *m* tidak mempunyai unit.

m < 1	Imej diperkecil
<i>m</i> = 1	Imej sama saiz dengan objek
m > 1	lmej diperbesar

Latihan Formatif

Rajah 6.35 menunjukkan satu imej yang dilihat menerusi sebuah kanta cembung yang mempunyai panjang fokus 10 cm.

6.3

- 1. Apakah ciri-ciri imej itu?
- 2. Lukis satu gambar rajah sinar untuk menunjukkan bagaimana imej dalam rajah tersebut terbentuk.
- 3. Cadangkan satu kedudukan yang sesuai untuk meletakkan objek bagi menghasilkan imej songsang.

Formula Kanta Nipis

Anda telah pun mempelajari kaedah untuk menentukan kedudukan imej dan ciri-ciri imej Anda dibentuk oleh kanta cembung dan kanta cekung melalui lukisan gambar rajah sinar. Selain jukisan gambar rajah sinar, formula kanta nipis boleh digunakan untuk menyelesaikan masalah mengenai kanta.

Formula kanta nipis memberikan hubungan antara jarak objek, u, jarak imej, v dengan panjang fokus, f bagi suatu kanta sebagai:

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

(a) Kedudukan kanta kamera dekat dengan objek menghasilkan imej yang besar

(b) Kedudukan kanta kamera jauh dari objek menghasilkan imej yang kecil

Gambar foto 6.4 Kedudukan kanta kamera dekat dan jauh dari objek

Gambar foto 6.4 menunjukkan imej pada kamera untuk jarak objek yang berbeza dari kanta kamera yang mempunyai panjang fokus yang sama.

Eksperimen **6.3**

Inferens: Jarak imej dipengaruhi oleh jarak objek yang berlainan

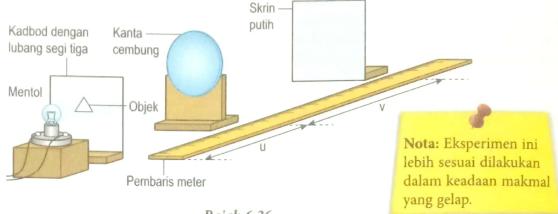
Hipotesis: Semakin bertambah jarak objek, semakin berkurang jarak imej

Tujuan: (i) Mengkaji hubungan antara jarak objek, u dengan jarak imej, v bagi satu kanta cembung

(ii) Menentukan panjang fokus kanta nipis dengan menggunakan formula kanta

Pemboleh ubah:

- (a) Dimanipulasikan: Jarak objek, u
- (b) Bergerak balas: Jarak imej, v
- (c) Dimalarkan: Panjang fokus, f


Radas: Kanta cembung (f = 10.0 cm), pemegang kanta, mentol (6 V) yang dipasang pada blok kayu, bekalan kuasa, kadbod dengan lubang kecil berbentuk segi tiga, skrin putih dan pembaris meter

Prosedur:

1. Sediakan susunan radas seperti yang ditunjukkan dalam Rajah 6.36.

Rajah 6.36

- 2. Hidupkan mentol dan mulakan eksperimen dengan jarak u = 15.0 cm. Laraskan kedudukan skrin sehingga suatu imej yang tajam terbentuk.
- 3. Ukur jarak imej, ν dan rekodkan bacaan dalam Jadual 6.9.
- **4.** Ulangi langkah 2 dan 3 dengan nilai u = 20.0 cm, 25.0 cm, 30.0 cm dan 35.0 cm. Kemudian, lengkapkan Jadual 6.9.

Video demonstrasi kaedah tanpa paralaks

http://bit. ly/2DhtjZy

Keputusan:

Jadual 6.9

u/cm	v / cm	$\frac{1}{u}$ / cm ⁻¹	$\frac{1}{v}$ / cm ⁻¹
15.0			
20.0			
25.0			
30.0			
35.0			

Analisis data:

- 1. Plotkan graf $\frac{1}{v}$ melawan $\frac{1}{u}$ pada kertas graf.
- 2. Tentukan nilai kecerunan graf, m.
- 3. Tentukan nilai pintasan pada paksi $\frac{1}{v}$ dan $\frac{1}{u}$.
- 4. Dengan menggunakan formula kanta dan graf yang diplot, tentukan nilai panjang fokus kanta dalam eksperimen ini.

Kesimpulan:

Apakah kesimpulan yang dapat dibuat daripada eksperimen ini?

Sediakan laporan yang lengkap bagi eksperimen ini.

Perbincangan:

Nyatakan satu langkah berjaga-jaga yang boleh diambil untuk meningkatkan kejituan keputusan eksperimen ini.

Menyelesaikan Masalah yang Melibatkan Formula Kanta Nipis

Jadual 6.10 Peraturan tanda semasa menggunakan formula kanta nipis

	Destates	akan Jormula kanta nipis	
	Positif (+)	Negatif (-)	
panjang fokus, f	Kanta penumpu atau kanta cembung	Kanta pencapah atau kanta cekur	
Jarak imej, v	Imej nyata Di sebelah kanta yang bertentangan dengan objek	 Imej maya Di sebelah kanta yang sama dengan objek 	

Sekeping kanta cembung nipis mempunyai panjang fokus 12 cm. Tentukan ciri-ciri, kedudukan dan pembesaran linear imej apabila jarak objek ialah:

- (a) 18 cm, dan
- (b) 4 cm.

Penyelesaian:

(a)
$$u = +18 \text{ cm}$$

 $f = +12 \text{ cm}$

Formula kanta nipis,
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

$$= \frac{1}{12} - \frac{1}{18}$$

$$v = +36 \text{ cm}$$

Pembesaran linear,
$$m = \frac{v}{u}$$

$$= \frac{36}{18}$$

$$= 2$$

lmej adalah nyata, songsang dan diperbesar. Imej terletak 36 cm dari kanta dan berada di sebelah kanta yang bertentangan dengan objek. lmej diperbesar 2 kali.

(b)
$$u = +4 \text{ cm}$$

 $f = +12 \text{ cm}$

Formula kanta nipis,
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

$$= \frac{1}{12} - \frac{1}{4}$$

$$v = -6 \text{ cm}$$

Pembesaran linear,
$$m = \frac{v}{u}$$

$$= \frac{6}{4}$$

$$= 1.5$$

Imej adalah maya, tegak dan diperbesar. Imej terletak 6 cm dari kanta dan berada di sebelah kanta yang sama dengan objek. Imej diperbesar 1.5 kali.

Contoh 2

Suatu objek setinggi 9 cm diletakkan pada jarak 60 cm dari kanta cekung dengan panjang fokus 30 cm. Tentukan kedudukan dan saiz imej yang terbentuk. Nyatakan ciri-ciri imej itu.

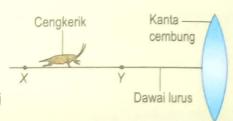
Penyelesaian:

$$u = +60 \text{ cm}$$

 $f = -30 \text{ cm}$

Formula kanta nipis,
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$
$$= \frac{1}{-30} - \frac{1}{60}$$
$$v = -20 \text{ cm}$$

Pembesaran linear,
$$m = \frac{h_i}{h_o} = \frac{v}{u}$$


$$\frac{h_i}{9} = \frac{20}{60}$$

$$h_i = 3 \text{ cm}$$

Imej adalah maya, tegak dan diperkecil. Imej terletak 20 cm dari kanta dan berada di sebelah kanta yang sama dengan objek. Ketinggian imej ialah 3 cm.

Contoh 3

Rajah 6.37 menunjukkan seutas dawai lurus diletakkan di sepanjang paksi utama sekeping kanta cembung nipis dengan panjang fokus 12 cm. *X* dan *Y* masing-masing ialah 24 cm dan 18 cm dari kanta. Seekor cengkerik mengambil masa 6 saat untuk bergerak dari *X* ke *Y*. Berapakah laju imej cengkerik itu?

Rajah 6.37

Penyelesaian:

$$u_1 = +18 \text{ cm} \qquad u_2 = +24 \text{ cm} \qquad f = +12 \text{ cm}$$
Formula kanta nipis,
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{v_1} = \frac{1}{f} - \frac{1}{u_1}$$

$$= \frac{1}{12} - \frac{1}{18}$$

$$v_1 = +36 \text{ cm}$$

$$\frac{1}{v_2} = \frac{1}{f} - \frac{1}{u_2}$$

$$= \frac{1}{12} - \frac{1}{24}$$

$$v_2 = +24 \text{ cm}$$
Laju imej cengkerik = $\frac{36 - 24}{6}$

$$= 2 \text{ cm s}^{-1}$$

Latihan Formatif 6.4

- Sekeping kanta cekung dengan panjang fokus 25 cm membentuk satu imej maya seekor semut pada jarak 20 cm dari pusat optik kanta.
 - (a) Di manakah kedudukan asal semut itu?
 - (b) Lukiskan gambar rajah sinar untuk menunjukkan pembentukan imej maya semut tersebut.
- 2. Sebuah mentol kecil berada pada jarak 1.6 m dari skrin dan sekeping kanta cembung nipis dengan panjang fokus 30 cm diletakkan di antara mentol dengan skrin itu. Tentukan dua kedudukan kanta cembung yang boleh menghasilkan imej tajam pada skrin.

6.5 Peralatan Optik

penggunaan Kanta dalam Peralatan Optik

penggunaan kanta dalam peralatan optik banyak memberi manfaat kepada kehidupan harian manusia.

Aktiviti 6.11

KIAK KMK

Tujuan: Mengkaji penggunaan kanta dalam peralatan optik

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Dapatkan maklumat melalui pembacaan mengenai penggunaan kanta dalam peralatan optik, iaitu kanta pembesar, mikroskop majmuk dan teleskop dalam konteks berikut:
 - (a) Kegunaan kanta dalam peralatan optik
 - (b) Fungsi kegunaan kanta tersebut
- 3. Maklumat boleh didapati daripada sumber bacaan atau carian di Internet.
- 4. Persembahkan hasil dapatan anda.

Kegunaan kanta dalam peralatan optik

http://bit. ly/2CuRmmf

Tujuan: Mewajarkan penggunaan kanta dalam peralatan optik

Radas: Kanta pembesar, mikroskop majmuk dan teleskop

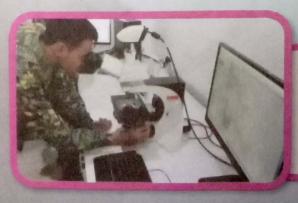
Arahan:

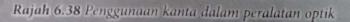
- 1. Sediakan kanta pembesar, mikroskop majmuk ^{dan} teleskop di atas tiga buah meja yang berasingan.
- 2. Bahagikan kelas kepada tiga kumpulan. Setiap kumpulan diberi masa 20 minit untuk memerhatikan objek melalui peralatan optik dan mengkaji struktur peralatan optik tersebut.
- 3. Catatkan pemerhatian dan hasil kajian kumpulan anda.

Perbincangan:

- 1. Nyatakan ciri-ciri imej yang dibentuk oleh kanta yang digunakan dalam kanta pembesar, mikroskop majmuk dan teleskop.
- 2. Wajarkan penggunaan kanta dalam kanta pembesar, mikroskop majmuk dan teleskop.

Rajah 6.38 menunjukkan penggunaan kanta dalam peralatan optik seperti kanta pembesar, mikroskop dan teleskop.


 Saya seorang ahli gemologi.
 Saya menggunakan kanta pembesar untuk mengenal pasti dan menilai batu permata.


 Saya seorang ahli oftalmologi.
 Saya menggunakan kanta pembesar untuk memeriksa mata.

 Saya seorang ahli mikrobiologi. Saya menggunakan mikroskop untuk melihat pelbagai mikroorganisma.

 Saya seorang ahli geologi.
 Saya menggunakan mikroskop untuk melihat dan mengenal pasti spesimen batuan dan mineral.

 Saya seorang ahli astronomi.
 Saya menggunakan teleskop untuk mengkaji gerakan jasad-jasad samawi.

Video penemuan imej lohong hitam menggunakan Event Horizon Telescope

http://bit. ly/2v951w4

INTEGRASI SEJARAH

Pada tahun 1609, Galileo Galilei (1564 – 1642) telah mencipta teleskop untuk melihat empat Bulan yang mengelilingi Musytari. Kejayaan ini telah mencetuskan revolusi dalam kajian astronomi.

INTEGRASI SEJARAH

Pada pertengahan abad ke-17, Antonie van Leeuwenhoek (1632 – 1723) telah berjaya mencipta sebuah mikroskop kanta yang dapat menghasilkan pembesaran linear 300 kali. Beliau berjaya melihat dan melukis mikroorganisma.

(6.5.1)

Mereka Bentuk dan Membina Mikroskop Majmuk dan Teleskop Menggunakan Kanta Cembung

Tujuan: Mereka bentuk dan membina mikroskop majmuk dan teleskop dengan menggunakan kanta cembung

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Kumpulkan maklumat mengenai mikroskop majmuk dan teleskop melalui pembacaan atau carian di Internet berdasarkan perkara berikut:
 - (a) Jenis dan fungsi kanta yang digunakan dalam mikroskop majmuk dan teleskop
 - (b) Kriteria pemilihan kanta objek dan kanta mata mikroskop majmuk yang dapat menghasilkan imej yang paling besar
 - (c) Kriteria pemilihan kanta objek dan kanta mata teleskop yang dapat menghasilkan imej yang paling jelas dan terang
 - (d) Lukiskan gambar rajah sinar untuk menunjukkan pembentukan imej dalam sebuah mikroskop majmuk dan teleskop
- 3. Bincangkan maklumat yang diperlukan serta lengkapkan Borang Strategi Data K-W-L sebagai panduan untuk mereka bentuk dan membina mikroskop majmuk dan teleskop anda. Anda boleh memuat turun dan mencetak borang tersebut dalam laman sesawang yang diberi.
- Buat lakaran reka bentuk mikroskop majmuk dan teleskop.
- 5. Bina rekaan mengikut lakaran yang dibuat.
- 6. Komen tentang keberkesanan rekaan dan tambah baik rekaan yang dihasilkan.
- 7. Persembahkan hasil reka bentuk dan binaan mikroskop majmuk dan teleskop kumpulan anda.

Video prinsip kerja mikroskop

http://bit. ly/2YNSafW

Video prinsip kerja teleskop

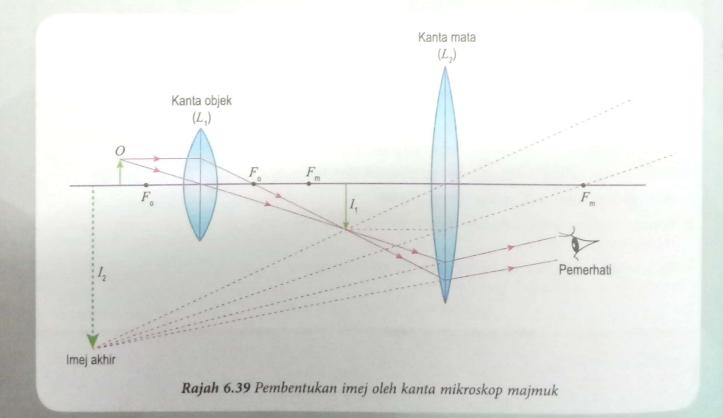
http://bit. ly/2XRBi13

Muat turun Borang Strategi Data K-W-L

http://bit. lv/2TTFkdh

Mikroskop Majmuk

- Terdiri daripada dua keping kanta cembung dengan panjang fokus yang pendek. Kanta objek dengan panjang fokus, $f_{\rm o}$ dan kanta mata dengan panjang fokus, $f_{\rm m}$. Panjang fokus $f_{\rm o}$ kurang daripada panjang fokus $f_{\rm m}$.
- Jarak di antara kanta objek dengan kanta mata > $f_0 + f_m$.
- Jarak objek adalah di antara f_o dengan $2f_o$. Kanta objek membentuk imej pertama, I_1 yang nyata, songsang dan diperbesar. Imej I_1 menjadi objek untuk kanta mata.
- Kanta mata berfungsi sebagai kanta pembesar. I_1 terletak di antara F_m dengan pusat optik kanta mata. Kanta mata membentuk imej akhir, I_2 yang **maya**, **diperbesar** dan masih **songsang** berbanding dengan objek O (Rajah 6.39).
- Lazimnya, kanta mata dilaraskan supaya imej akhir, I_2 terletak pada titik dekat mata pemerhati supaya keadaan penglihatan yang paling jelas dapat dicapai.


Fail INFO

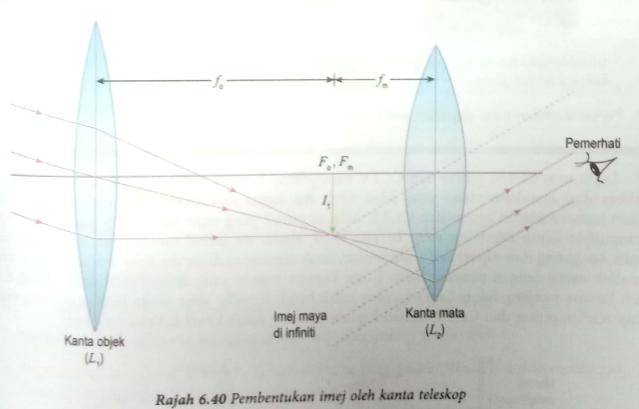
Pelarasan normal sebuah mikroskop majmuk boleh dilakukan dengan melaraskan kanta mata supaya imej akhir terbentuk pada jarak penglihatan terdekat, dari kanta mata, iaitu 25 cm.

Pembesaran mikroskop majmuk

http://bit. ly/2XoRdcO

Teleskop

Teleskop terdiri daripada dua keping kanta cembung. Kanta objek dengan panjang fokus, f, yang panjang. Kanta mata dengan panjang fokus, f wang pendek. Jarak di antara kanta objek dengan kanta mata ialah $f_{o} + f_{m}$


Sinar-sinar selari dari suatu objek yang jauh akan ditumpukan pada satah fokus kanta objek untuk membentuk imej pertama, I1 yang nyata, songsang dan diperkecil. Imej pertama, I, bertindak sebagai objek bagi kanta mata. Kanta mata membentuk imej akhir, I, yang maya, songsang dan diperbesar berbanding dengan objek (Rajah 6.40).

Lazimnya, imej I, terletak di infiniti. Keadaan ini dinamakan pelarasan normal.

Fail INFO

Pelarasan normal untuk teleskop boleh dilakukan dengan melaraskan jarak di antara kanta objek dengan kanta mata sebagai $L = f_0 + f_m$ Keadaan ini membolehkan imej akhir terbentuk di infiniti untuk penglihatan yang paling selesa.

Pembesaran teleskop pada pelarasan normal, M ialah

Aplikasi Kanta Bersaiz Kecil dalam Teknologi Peralatan Optik

Kemajuan teknologi peralatan optik telah berjaya menghasilkan kanta bersaiz kecil. Kanta ini banyak digunakan dalam kamera telefon pintar dan televisyen litar tertutup (CCTV).


Tujuan: Membincangkan aplikasi kanta bersaiz kecil dalam peralatan optik

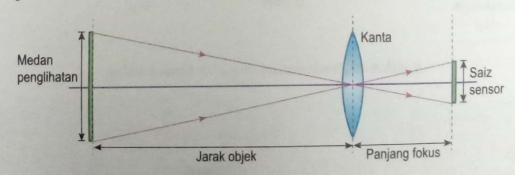
Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan dalam bentuk Round Table.
- 2. Dapatkan maklumat mengenai aplikasi kanta bersaiz kecil dalam kamera telefon pintar dan CCTV berdasarkan perkara berikut:
 - (a) Kegunaan kanta bersaiz kecil dalam peralatan optik

3. Persembahkan hasil dapatan anda dalam bentuk grafik.

(b) Fungsi kegunaan kanta tersebut

Gambar foto 6.6 Kanta dalam kamera telefon pintar


Gambar foto 6.7 CCTV bersaiz kecil

Kanta dalam telefon pintar

https://bit. ly/2TddnwL

Lazimnya, telefon pintar dan CCTV mempunyai kamera resolusi tinggi untuk menangkap gambar dan merakam video yang jelas. Oleh itu, kanta merupakan komponen paling utama dalam kamera telefon pintar dan CCTV. Telefon pintar yang nipis dan CCTV yang bersaiz kecil mempunyai kanta cembung yang bersaiz kecil. Kanta itu boleh membentuk suatu imej yang nyata, songsang dan diperkecil pada sensor. Jarak minimum di antara sensor dengan pusat kanta haruslah sama dengan panjang fokus kanta kamera seperti yang ditunjukkan dalam Rajah 6.41. Oleh kerana panjang fokus kanta kamera tidak boleh bernilai sifar, maka ketebalan keseluruhan suatu telefon pintar dan CCTV terhad kepada panjang fokus kanta kamera tersebut.

Rajah 6.41 Pembentukan imej oleh kanta bersaiz kecil dalam kamera telefon pintar dan CCTV

Pemikiran Logik KIAK KMK

Tujuan: Membincangkan had ketebalan telefon pintar disebabkan oleh ketebalan kanta kamera

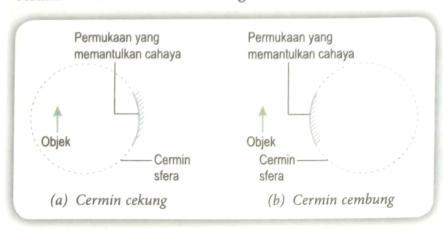
Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- 2. Bincangkan mengenai had ketebalan telefon pintar disebabkan oleh ketebalan kanta kamera.
- 3. Anda boleh dapatkan maklumat melalui pembacaan atau carian di Internet.
- 4. Persembahkan hasil perbincangan kumpulan anda.

Latihan Formatif

6.5

Seorang murid dibekalkan dengan sekeping kanta mata yang mempunyai panjang fokus, $f_m = 7$ cm dan empat keping kanta objek A, B, C dan D seperti yang ditunjukkan dalam Iadual 6.11.

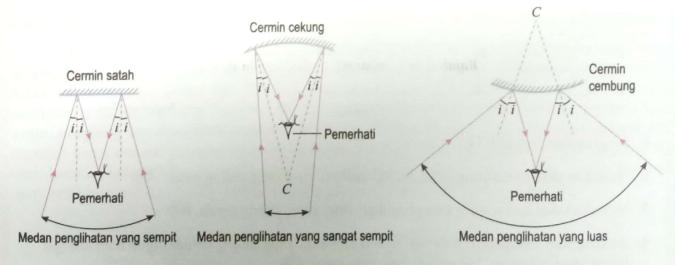

ladual 6.11

Kanta	Panjang fokus kanta objek, f_o / cm	Pembesaran teleskop, M	Diameter kanta objek / cm
A	14		5.0
В	14		10.0
С	70	yang a mab	5.0
D	70		10.0

- 1. Lengkapkan Jadual 6.11.
- 2. Nyatakan dua kanta yang akan menghasilkan imej yang paling besar. 🧠
- 3. Nyatakan dua kanta yang menghasilkan imej yang paling cerah.
- 4. Berdasarkan jawapan di 2 dan 3, nyatakan kanta yang paling sesuai digunakan sebagai kanta objek teleskop. Terangkan jawapan anda.

6.6 Pembentukan Imej oleh Cermin Sfera

Cermin sfera merupakan sebahagian daripada sfera berongga yang terpotong seperti yang ditunjukkan dalam Rajah 6.42. Jika permukaan dalam bahagian yang terpotong itu memantulkan cahaya, cermin itu ialah cermin cekung. Jika permukaan luar bahagian yang terpotong itu memantulkan cahaya, cermin itu ialah cermin cembung.



Rajah 6.42 Cermin sfera daripada sfera berongga

Perhatikan Gambar foto 6.8. Permukaan cekung dan permukaan cembung sudu keluli bertindak sebagai cermin cekung dan cermin cembung. Bolehkah anda nyatakan ciri imej yang dibentuk oleh permukaan cekung dan permukaan cembung sudu itu?

Gambar foto 6.8 Imej-imej yang dibentuk oleh permukaan sudu

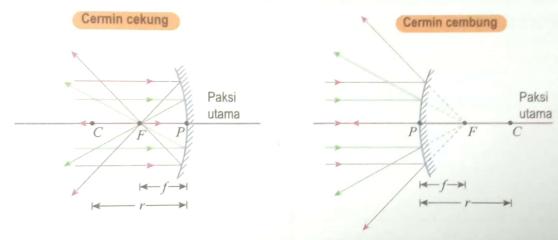
Rajah 6.43 Medan penglihatan di hadapan cermin satah, cermin cekung dan cermin cembung

Rajah 6.43 pula menunjukkan medan penglihatan seorang pemerhati di hadapan sekeping cermin satah, cermin cekung dan cermin cembung yang bersaiz sama.

EduwebTV: Pembentukan imej oleh cermin sfera

http://bit.

ly/2L6PR4F



Tujuan: Mencari maklumat mengenai istilah optik yang berkaitan dengan cermin sfera

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- Dapatkan maklumat daripada pelbagai sumber bacaan dan laman sesawang mengenai istilah berikut:
 - · paksi utama
 - · jarak objek, u
 - · panjang fokus, f
 - jejari kelengkungan cermin, r
- titik fokus, F
- jarak imej, v
- pusat kelengkungan, C
- 3. Persembahkan hasil dapatan anda.

Rajah 6.44 menunjukkan istilah optik yang digunakan dalam gambar rajah sinar cermin sfera. Jadual 6.12 pula menerangkan istilah optik tersebut.

Rajah 6.44 Gambar rajah sinar cermin sfera

Jadual 6.12 Penerangan bagi istilah optik yang berkaitan dengan cermin sfera

Istilah Optik	Penerangan	
Paksi utama	Garis lurus yang menerusi pusat kelengkungan dan kutub cermin sfera, P	
Pusat kelengkungan, C	Pusat sfera yang menghasilkan cermin cekung atau cermin cembung	
Jejari kelengkungan cermin, r	Jarak di antara kutub cermin sfera, P dengan pusat kelengkungan, C	
Titik fokus, F	Satu titik yang terletak pada paksi utama cermin sfera, untuk cermin cekung, sinar cahaya yang selari dengan paksi utama akan tertumpu pada titik ini untuk cermin cembung, sinar cahaya yang selari dengan paksi utama seolah-olah tercapah dari titik ini	
larak objek, u	Jarak dari objek ke kutub cermin sfera, P	
Jarak imej, v	Jarak dari imej ke kutub cermin sfera, P	
Panjang fokus, f	Jarak di antara titik fokus, F dengan kutub cermin sfera, P	
660	1 271	

Panduan Melukis Gambar Rajah Sinar Cermin Sfera Lihat panduan dalam Jadual 6.13 untuk melukis gambar rajah sinar cermin sfera.

Jadual 6.13 Panduan melukis gambar rajah sinar cermin sfera

Cermin cembung Cermin cekung Sinar cahaya yang menuju C dipantulkan balik Sinar cahaya yang melalui C dipantulkan balik mengikut lintasan asal. mengikut lintasan asal. Paksi utama Paksi utama 2. Sinar cahaya yang selari dengan paksi utama 2. Sinar cahaya yang selari dengan paksi utama dipantulkan seolah-olah berpunca dari titik dipantulkan melalui titik fokus, F. fokus, F. Paksi utama Paksi utama Sinar cahaya yang melalui F dipantulkan selari 3. Sinar cahaya yang menuju F dipantulkan selari dengan paksi utama. dengan paksi utama. Paksi utama Paksi utama

Jejari kelengkungan cermin, r adalah dua kali ganda panjang fokus cermin sfera, f, iaitu r = 2f.

(KMK)

Nelukis gambar rajah sinar untuk menunjukkan kedudukan imej dan menentukan ciri-ciri imej yang dibentuk oleh cermin cekung dan cermin cembung

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan.
- Layari laman sesawang yang diberi dan lakukan simulasi yang terdapat dalam laman sesawang tersebut.
- Berdasarkan simulasi tersebut, lengkapkan Jadual 6.14 dan Jadual 6.15. Anda boleh memuat turun dan mencetak jadual tersebut dalam laman sesawang yang diberi.
- Lukiskan gambar rajah sinar untuk menunjukkan kedudukan imej dan tentukan ciri-ciri imej yang dibentuk oleh cermin cekung dan cermin cembung.

Simulasi imej cermin cekung dan cermin cembung

http://bit. ly/2DeXX5X

Muat turun Jadual 6.14 dan Jadual 6.15

http://bit. ly/2CoXgWi

Jadual 6.14 Kedudukan imej dan ciri-ciri imej yang dibentuk oleh cermin cekung

Kedudukan objek	Gambar rajah sinar	Kedudukan imej	Ciri-ciri imej
Objek di infiniti			
Objek lebih jauh dari C $(u > 2f)$			
Objek pada C $(u = 2f)$			
Objek di antara F dengan C $(f < u < 2f)$			
Objek pada F $(u = f)$			
Objek di antara F dengan P $(u < f)$			

Jadual 6.15 Kedudukan imej dan ciri-ciri imej yang dibentuk oleh cermin cembung

Kedudukan objek	Gambar rajah sinar	Kedudukan imej	Ciri-ciri imej
Objek lebih jauh dari F $(u > f)$			
Objek di antara F dengan P $(u < f)$			

Jadual 6.16 Kedudukan imej dan ciri-ciri imej yang dibentuk oleh cermin cekung

Kedudukan objek	Gambar rajah sinar	Kedudukan imej	Ciri-ciri imej
Objek di infiniti	C F P	 Jarak imej: v = f Di hadapan cermin 	NyataSongsangDiperkecil
Objek lebih jauh dari C $(u > 2f)$		 Jarak imej: f < v < 2f Di hadapan cermin 	NyataSongsangDiperkecil
Objek pada C $(u = 2f)$		 Jarak imej: v = 2f Di hadapan cermin 	NyataSongsangSama saiz dengan objek
Objek di antara F dengan C $(f < u < 2f)$		 Jarak imej: v > 2f Di hadapan cermin 	 Nyata Songsang Diperbesar
Objek pada F $(u = f)$	C F P	 Imej di infiniti Di belakang cermin	 Maya Tegak Diperbesar
Objek di antara F dengan P $(u < f)$	C F P	 Jarak imej: v > u Di belakang cermin 	MayaTegakDiperbesar

Jadual 6.17 Kedudukan imej dan ciri-ciri imej yang dibentuk oleh cermin cembung

edudukan imej	Ciri-ciri imej
i belakang cermin •	MayaTegakDiperkecil
i belakang cermin •	Maya Tegak Diperkecil

Aplikasi Cermin Cekung dan Cermin Cembung dalam Kehidupan Harian

Gambar foto 6.9 menunjukkan satu cermin bintik buta (Blind Spot Mirror). Cermin ini ialah sejenis cermin cembung. Apakah kegunaan cermin ini dan mengapakah cermin ini digunakan?

Gambar foto 6.9

Cermin bintik buta

Aktiviti 6.18

Tujuan: Mencari maklumat untuk mewajarkan penggunaan cermin cekung dan cermin cembung dalam kehidupan

Arahan:

- 1. Jalankan aktiviti ini secara berkumpulan dalam bentuk Round Table.
- 2. Anda boleh dapatkan maklumat dari sumber bacaan di perpustakaan atau di Internet mengenai:
 - (a) penggunaan cermin cekung dan cermin cembung dalam kehidupan.
 - (b) kepentingan penggunaan cermin tersebut.
- 3. Persembahkan hasil dapatan anda dalam bentuk peta pemikiran yang sesuai.

Aplikasi Cermin Cekung dalam Kehidupan Harian

Cermin solek Cermin cekung digunakan sebagai cermin solek untuk menghasilkan imej yang diperbesar bagi memudahkan persolekan.

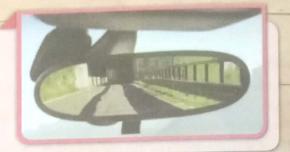
Cermin pergigian Cermin pergigian membentuk imej yang tegak dan lebih besar daripada objek untuk memudahkan pemeriksaan gigi.

(KIAK) (KMK)

Pemantul dalam lampu hadapan kereta Cermin parabola cekung digunakan sebagai pemantul dalam lampu hadapan kereta untuk mengekalkan keamatan cahaya pada jarak yang jauh, terutama semasa memandu kereta pada waktu malam.

Rajah 6.45 Aplikasi cermin cekung dalam kehidupan harian

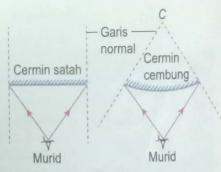
Aplikasi Cermin Cembung dalam Kehidupan Harian



Cermin
keselamatan jalan
Cermin cembung
diletakkan di selekoh
tajam yang berbahaya
untuk meluaskan medan
penglihatan pemandu.

Cermin keselamatan dalam bangunan Cermin cembung dipasangkan di dalam bangunan atau pusat beli-belah untuk tujuan pengawasan.

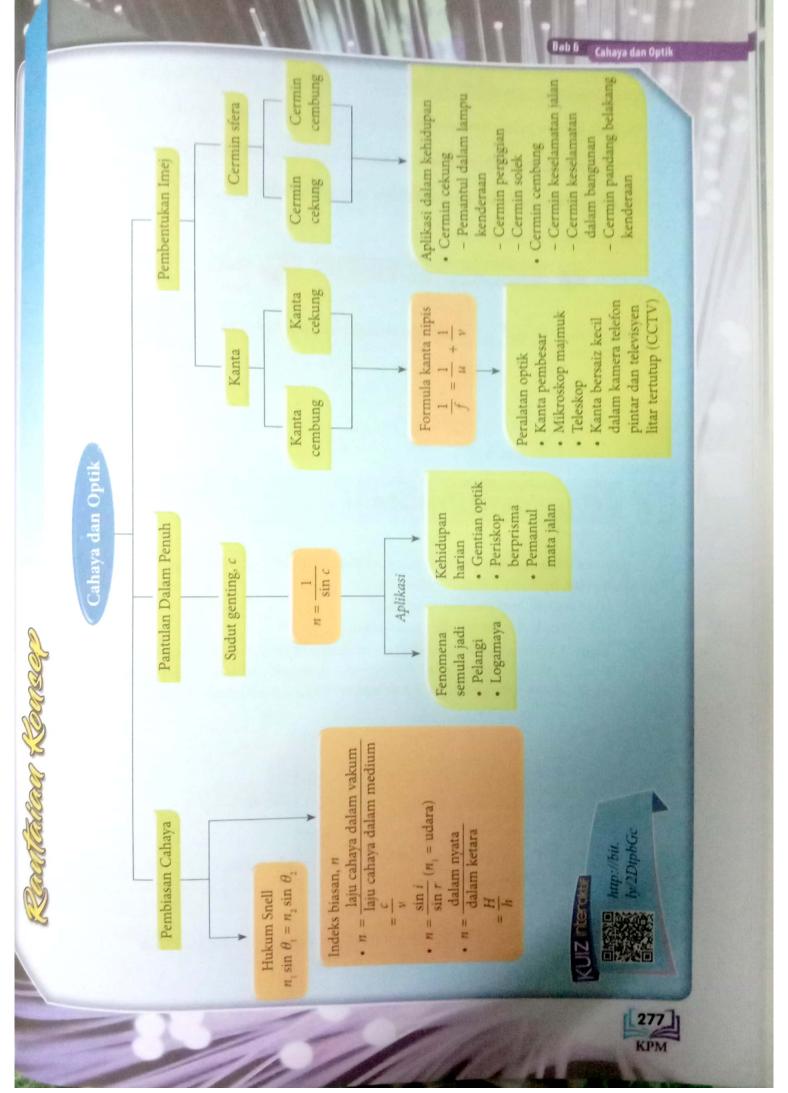
Cermin pandang belakang kenderaan Cermin pandang belakang menyediakan medan penglihatan yang luas untuk membolehkan pemandu melihat kenderaan yang datang dari arah belakang.


Rajah 6.46 Aplikasi cermin cembung dalam kehidupan harian

Latihan Formatif

- 1. Rajah 6.47 menunjukkan seorang murid yang melihat ke arah sebuah cermin satah dan cermin cembung yang sama saiz.
 - (a) Lengkapkan lintasan cahaya untuk kedua-dua jenis cermin itu.

6.6


(b) Jenis cermin yang manakah dapat menghasilkan medan penglihatan yang lebih luas?

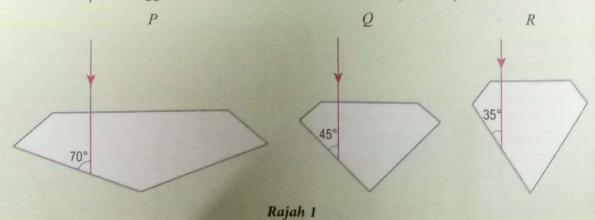
Rajah 6.47

- 2. Adelia memegang sebatang sudu keluli yang berkilat dengan bahagian belakang (permukaan cembung) menghadap matanya pada jarak kira-kira 30 cm dari mata. Beliau dapat melihat imej tegak dirinya. Namun, apabila sudu diubah supaya bahagian hadapan (permukaan cekung) sudu itu menghadap matanya, imej songsang diperhatikan.
 - (a) Terangkan kejadian tersebut.
 - (b) Mengapakah imej tegak tidak dapat dilihat pada permukaan hadapan sudu itu pada jarak tersebut?

Scanned by CamScanner

REFLEKSI KENDIRI

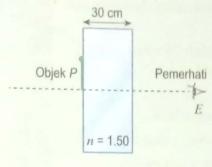
- Perkara baharu yang saya pelajari dalam bab cahaya dan optik ialah _______.
 Perkara paling menarik yang saya pelajari dalam bab cahaya dan optik ialah _______.
- 3. Perkara yang saya masih kurang fahami atau kuasai ialah ______
 - Kurang 1 2 3 4 5 Sangat baik
- 5. Saya perlu untuk meningkatkan prestasi saya dalam bab ini.



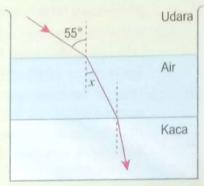
Penilaian Prestasi

- 1. Intan ialah sejenis batu permata yang sentiasa kelihatan berkilau. Sudut genting intan dalam udara ialah 24°.
 - (a) (i) Apakah maksud sudut genting?

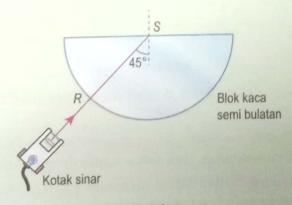
4. Prestasi anda dalam bab ini.


- (ii) Tentukan nilai indeks biasan intan.
- (b) Rajah 1 menunjukkan tiga jenis intan dengan cara pemotongan yang berlainan. Suatu sinar memasuki setiap intan seperti yang ditunjukkan dalam rajah. Lengkapkan lintasan sinar cahaya sehingga sinar itu keluar semula ke udara pada Rajah 1.

(c) Nyatakan konsep-konsep fizik yang terlibat dalam fenomena ini.



2. Rajah 2 menunjukkan satu blok kaca dengan indeks biasan 1.50 yang terletak di antara mata pemerhati, E dengan objek P. Jika ketebalan kaca ialah 30.0 cm, berapakah jarak di antara objek P dengan imejnya?


Rajah 2

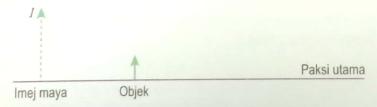
- 3. Rajah 3 menunjukkan suatu sinar cahaya merambat dari udara ke air dan kemudian memasuki blok kaca. Indeks biasan air ialah 1.33.
 - (a) Tentukan sudut x.
 - (b) Jika laju cahaya dalam udara ialah 3.0×10^8 m s⁻¹, berapakah laju cahaya di dalam air?
 - (c) Antara air dengan kaca, medium yang manakah mempunyai ketumpatan optik yang lebih tinggi? Terangkan jawapan anda berdasarkan kepada Rajah 3.

Rajah 3

4. Mariam menjalankan satu eksperimen dengan blok kaca semi bulatan dan kotak sinar. Rajah 4 menunjukkan lintasan sinar cahaya itu memasuki blok kaca di titik R dan menuju ke pusat blok kaca semi bulatan, titik S.

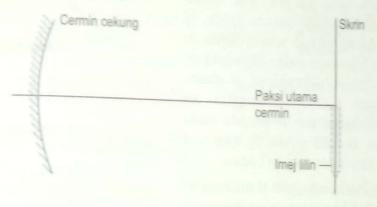
Rajah 4

- (a) Mengapakah sinar cahaya tidak mengubah arah di titik R?
- (b) Jika indeks biasan blok kaca ialah 1.52, tentukan sudut genting untuk cahaya dalam medium ini.
- (c) Lukiskan lintasan sinar cahaya selepas titik S dan tandakan nilai sudut sinar cahaya ini dengan garis normal di titik S.



- 5. Apabila cahaya dari satu bintang merambat masuk ke dalam atmosfera Bumi, arah perambatannya akan berubah. Situasi tersebut ditunjukkan dengan ringkas dalam Rajah 5. Perubahan arah diwakili oleh sudut $\Delta\theta = i r$.
 - (a) Laju cahaya dalam udara ialah 299 910 km s⁻¹ dan laju cahaya dalam vakum ialah 3.00 × 10⁸ m s⁻¹.
 - (i) Hitungkan indeks biasan udara.
 - (ii) Jelaskan nilai indeks biasan yang diperoleh.
 - (b) Nilai Δθ pada waktu malam yang panas adalah berbeza dengan waktu malam yang sejuk. Nyatakan sebab yang munasabah bagi perbezaan tersebut.
 - (c) Rajiv pulang dari sekolah dengan menaiki van sekolah pada suatu hari yang panas dan cerah. Rajiv dapat melihat lopak air di permukaan jalan raya di hadapannya. Apabila van itu sampai di tempat lopak air itu, Rajiv mendapati lopak air itu sebenarnya tidak wujud. Terangkan kejadian fenomena tersebut.

Rajah 5


6. Rajah 6 menunjukkan suatu objek dan imej maya yang dibentuk oleh sekeping kanta cembung.

Rajah 6

- (a) Satu daripada ciri imej I dalam Rajah 6 ialah maya. Nyatakan ciri-ciri yang lain bagi imej I.
- (b) Lengkapkan gambar rajah sinar pada Rajah 6 dan tentukan kedudukan kanta dan titik fokus kanta. Tandakan kedudukan titik fokus kanta dengan huruf, F.
- (c) Jika objek itu digerakkan perlahan-lahan menjauhi kanta, nyatakan dua perubahan yang mungkin berlaku kepada imej tanpa melukis gambar rajah sinar.
- 7. Seorang anak kapal angkatan tentera laut sedang melihat keadaan di permukaan laut melalui periskop kapal selam. Beliau mendapati bahawa Matahari sedang terbenam. Kapten kapal selam itu memberitahu anak kapal bahawa Matahari sebenarnya sudah terbenam.
 - (a) Adakah pernyataan kapten kapal selam itu benar? Terangkan jawapan anda. 🦱
 - (b) Terangkan pembentukan imej dalam sebuah periskop prisma bagi objek yang terhalang di hadapan dengan bantuan gambar rajah sinar yang sesuai.

Rajah 7

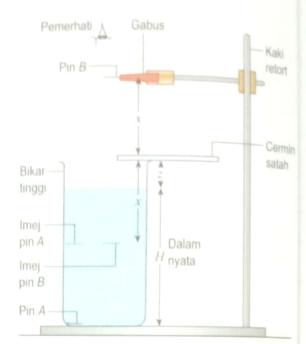
- (a) Pada Rajah 7,
 - (i) tandakan titik fokus cermin dengan huruf F dan pusat kelengkungan dengan huruf C.
 - (ii) lukiskan gambar rajah sinar yang lengkap untuk menentukan kedudukan objek.
- (b) Bagaimanakah pembesaran imej boleh ditambah?
- 9. (a) Terangkan cara membina sebuah mikroskop majmuk menggunakan dua keping kanta. Dalam jawapan anda, nyatakan jenis kanta yang anda pilih, anggaran panjang fokus kanta-kanta itu dan ciri-ciri imej yang terbentuk oleh setiap kanta.
 - (b) Mengapakah teleskop astronomi tidak sesuai digunakan untuk melihat objek jauh di permukaan Bumi?
 - (c) Bagaimanakah anda mengubah suai mikroskop majmuk untuk menjadi sebuah teleskop astronomi?
- 10. Jadual 1 menunjukkan kelajuan cahaya dalam vakum dan dua jenis bahan untuk pembuatan gentian optik.

Jadual IMediumLaju cahaya / m s $^{-1}$ Vakum 3.00×10^8 Bahan I 2.01×10^8

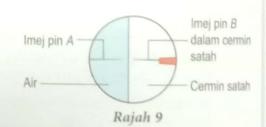
 1.96×10^{8}

- (a) Kenal pasti bahan yang sesuai digunakan sebagai teras dan penyalut gentian optik. Terangkan jawapan anda.
- (b) Tentukan sudut genting gentian optik ini.
- (c) Mengapakah permukaan gentian optik mesti sangat licin?

Bahan II


Sudut Pengayaan

11. Amin menjalankan satu eksperimen untuk menyiasat hubungan antara dalam nyata, H dengan dalam ketara, h bagi suatu objek di dalam suatu cecair. Susunan radas ditunjukkan dalam Rajah 8. Pin A diletakkan di dasar sebuah bikar tinggi. Cecair dituangkan ke dalam bikar itu sehingga pin A berada pada kedalaman 5.0 cm. Dalam nyata, H bagi pin A ialah jarak pin dari permukaan cecair.


Sebatang pin yang berlainan, pin B dilaraskan sehingga imej pin B dalam cermin satah segaris dengan imej pin A apabila diperhatikan dari atas seperti yang ditunjukkan dalam Rajah 9.

Dalam ketara, h bagi pin A sama dengan jarak di antara imej pin B dengan permukaan cecair. Jarak x, boleh ditentukan dengan mengukur jarak di antara pin B dengan cermin satah. Jarak permukaan cecair ke cermin satah, z juga diukur.

Prosedur ini diulang pada kedalaman nyata cecair, H = 10.0 cm, 15.0 cm, 20.0 cm, 25.0 cm dan 30.0 cm. Semua bacaan direkodkan dalam Jadual 2.

Rajah 8

Jadual 2

H/cm	x/cm	z/cm	h/cm
5.0	30.8	27.0	
10.0	29.5	22.0	
15.0	28.3	17.0	
20.0	27.0	12.0	
25.0	25.8	7.0	
30.0	24.6	2.0	

- (a) Berdasarkan keputusan eksperimen ini, tentukan hubungan antara h dengan H dan seterusnya deduksikan nilai indeks biasan cecair.
- (b) Lukis gambar rajah sinar yang sesuai mengenai pembentukan imej-imej yang dapat dilihat oleh Amin.
- (c) Bincangkan kepentingan cermin satah dan kaedah tanpa paralaks dalam eksperimen tersebut.

HANYA JAWAPAN TERPILIH DISEDIAKAN DI SINI

Bab l Pengukuran

Penilaian Prestasi

Kuantiti asas fizik	Unit S.I.
Panjang	meter
Jisim	kilogram
Masa	saat
Suhu termodinamik	kelvin
Arus elektrik	ampere
Keamatan berluminositi	candela
Kuantiti jirim	mol

- (b) $kg m^2 s^{-3}$
- 2. (a) 1 m s⁻²
 - (b) 15 m s⁻¹
 - (c) v bertambah secara linear dengan t

3. (a)	T/s	1.30	1.80	2.22	2.55	2.86
	T^2/s^2	1.69	3.24	4.93	6.50	8.18

- (c) 0.0817 s² g⁻¹
- (d) Tidak berubah kerana tempoh ayunan springpemberat tidak bergantung pada nilai pecutan graviti.
- (e) Daripada graf T^2 melawan m, gunakan kaedah ekstrapolasi, tentukan nilai m apabila $T^2 = 1.0$ s, maka T juga sama dengan 1.0 s. Gantikan pemberat berslot dengan plastisin yang berjisim m, iaitu kira-kira 12 g.

4. (a)	Murid	Masa, t/s	Kelajuan, v / m s-1
	A	58.79	6.80
	В	60.06	6.66
	С	57.68	6.93
	D	59.87	6.68
	E	57.99	6.90

- (b) Beliau menggunakan jam randik elektronik untuk mengukur masa pergerakan mereka.
- (c) Murid C paling pantas.
- (d) Menggunakan pengesan elektronik untuk mengelakkan kesilapan pengukuran kerana masa tindak balas manusia untuk memulakan dan menghentikan jam randik.

Sila imbas QR code ini untuk jawapan lengkap. http://bit.ly/2FSQbAC

5. (a) Dalam sistem lama, $F = mlr^2$

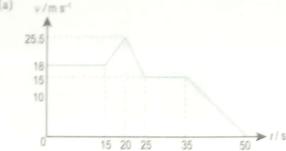
$$m = Ft^2l^{-1}$$

Maka, dalam sistem FAT

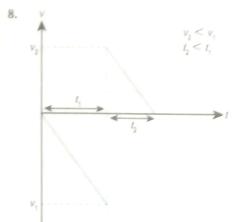
 $l = A^{16}$, dan

 $m = FT^2l^{-1},$

 $=FT^2A^{-\frac{1}{2}}$


- (b) Tiada alat pengukur yang sesuai untuk mengukur daya dan luas dengan tepat.
 - Tiada alat atau objek piawaian untuk menetapkan daya dan luas
 - Unit untuk kuantiti terbitan menjadi sangat rumit dan akan menghalang komunikasi yang berkesan antara ahli fizik.
- (a) Garis lurus tidak melalui asalan dan kecerunan negatif
 - p berkurang secara linear dengan q
 - (b) Garis melengkung tidak melalui asalan dan kecerunan negatif
 - p berkurang dengan q
 - (c) Garis lurus mengufuk dan kecerunan sifar
 - p malar atau p tidak bergantung pada q

Bab 2 Daya dan Gerakan 1


Penilaian Prestasi

- 1. (a) 10.0 m s⁻¹
 - (b) 25.0 m
 - (c) 9.0 m
- 2. (a) -2.0 m s⁻²
 - (b) 5 s
- 3. Apabila Swee Lan mendayung air sungai ke belakang, satu daya tindakan F terhasil ke atas air sungai dan pada masa yang sama, satu daya tindak balas yang sama magnitud tetapi bertentangan arah F' bertindak ke atas sampan. Oleh itu, sampan itu akan bergerak ke hadapan.
- 4. 12 s
- 5. 12 N
- 6. 100 m s

(b) 25.5 m s⁻¹

- 9. (a) 7.5 s
 - (b) 56.25 m
 - (c) Untuk kereta, x, = 900 m Untuk bas, $x_{ij} = 750 \text{ m}$
 - (d) x, lebih besar daripada x, maka, kereta berada di hadapan bas
- 10. (a) Sebelum pelancaran, roket yang membawa kapal angkasa berada pegun di atas tapak pelancaran dengan momentum sifar. Selepas pelancaran, gas panas bergerak dengan pantas melalui ekzos dengan suatu momentum yang kuat. Oleh sebab jumlah momentum harus diabadikan, momentum yang kuat akan menghasilkan daya tujahan ke atas. Daya tujahan ini akan memberikan pecutan kepada pergerakan roket ke atas.
 - (b) Pecutan roket boleh ditambah dengan mengurangkan jisim roket tersebut.

Bab 3 Kegravitian

Penilaian Prestasi

1. (a) (i)
$$F = \frac{GMm}{r^2}$$
(ii)
$$F = \frac{mv^2}{r}$$
(iii)
$$v = \frac{2\pi r}{r}$$

(b)
$$M = \frac{4\pi^2 r^3}{GT^{'2}}$$

(c) $1.99 \times 10^{30} \text{ kg}$

(c)
$$1.99 \times 10^{30} \text{ kg}$$

2. (a)
$$v = \frac{2\pi r}{T}$$

(b)
$$v = \sqrt{\frac{GM}{r}}$$

- (c) Satelit jatuh bebas mengelilingi Bumi dengan pecutan memusat yang sama dengan pecutan graviti. Pecutan graviti tidak bergantung pada jisim objek.
- 3. Hukum Kepler II menyatakan bahawa satu garis yang menyambungkan planet dengan Matahari mencakupi luas yang sama ketika selang masa yang sama apabila planet bergerak dalam orbit. Hal ini bermaksud, semakin kecil jarak sebuah planet dari Matahari, semakin besar halajunya. Dari A ke B, laju planet Uranus bertambah sehingga suatu nilai maksimum dan kemudian berkurang semula.
- 4. (a) Pasangan satelit dan Bulan
 - (b) 7.71 × 103 N
- 5. (a) Jisim Bumi Jarak dari pusat Bumi
 - (b) 0.23 m s⁻²

6. (a)
$$\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$$

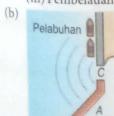
- (b) 4.49 × 10¹² m
- 7. 29.44 tahun
- 8. 9 996 m s-1
- 9. (a) $3.54 \times 10^4 \text{ m s}^{-1}$
 - (b) Zarah-zarah kecil itu tidak mungkin terlepas kerana halaju lepas planet sangat tinggi.

10. (i)
$$F_{BC} = 2P$$

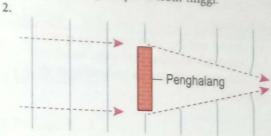
(ii) $F_{AC} = 0.5P$

Bab 4 Haba

Penilaian Prestasi


- 1. (a) Haba yang diserap atau dibebaskan semasa perubahan fasa jirim tanpa perubahan suhu.
 - (b) Apabila stim terkondensasi di dalam air, haba pendam yang dibebaskan memanaskan air itu.
 - (c) Pemanasan yang cepat.
 - Pemanasan air secara langsung, iaitu tiada pembaziran haba untuk memanaskan bekas.
- 2. (c) /
- 3. (a) Bongkah A.
 - (b) Bongkah B. Bongkah yang mempunyai muatan haba yang rendah akan mengalami peningkatan suhu yang lebih tinggi.
- 4. (a) Haba pendam tentu ialah kuantiti haba yang diserap atau dibebaskan semasa perubahan fasa bagi 1 kg bahan tanpa perubahan suhu.
 - (b) 2.27 × 105 J
- 5. (a) Haba pendam tentu pengewapan, l, bagi suatu bahan ialah kuantiti haba yang diserap semasa pendidihan atau kuantiti haba yang dibebaskan semasa kondensasi bagi 1 kg bahan itu tanpa perubahan suhu.

- (b) (i) 0.28 kg (ii) 2.25 × 10° J kg-1
- 6. 4.95]
- 7. (a) 2 200 W
 - (b) 513.6 s
- 8. (a) 264 kPa
 - (b) Isi padu tayar tidak berubah.
- g, (a) 3.82 cm³
 - (b) Jisim udara yang terperangkap tidak berubah.
 - Tekanan udara yang terperangkap adalah malar
 - Udara terperangkap dan air berada dalam keseimbangan terma. Suhu air sama dengan suhu udara itu.
- 10. (a) Haba pendam tentu pelakuran, l_i bagi suatu bahan ialah kuantiti haba yang diserap semasa peleburan atau kuantiti haba yang dibebaskan semasa pembekuan bagi 1 kg bahan itu tanpa perubahan suhu.
 - (b) Haba yang diserap tidak menambah tenaga kinetik purata molekul-molekul. Haba itu digunakan untuk melemahkan ikatan di antara molekul ais.
 - (c) (i) 40 000 J
 - (ii) 0.12 kg
 - (d) Semua haba yang dibekalkan oleh pemanas rendam diserap oleh ais. Tiada kehilangan haba ke persekitaran.
 - Ais tidak menyerap haba daripada persekitaran.
- 11. (a) (i) 147 000 J
 - (ii) 183.75 s
 - (b) Plastik mempunyai muatan haba tentu yang tinggi dan merupakan penebat haba.
 - (c) Logam mempunyai muatan haba tentu yang rendah dan merupakan pengalir haba.
 - (d) Air akan bergerak ke atas apabila dipanaskan dan air yang sejuk akan turun melalui perolakan. Maka, seluruh air dapat dipanaskan. Oleh itu, elemen pemanas cerek diletakkan di dasar cerek.
- 12. (a) Aluminium
 - (b) Aluminium mempunyai muatan haba tentu yang rendah dan merupakan pengalir haba yang baik. Oleh itu, aluminium sangat sesuai digunakan dalam peralatan memasak.

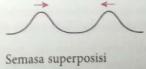

Bab 5 Gelombang

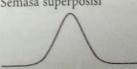
Penilaian Prestasi

- 1. (a) (i) Pantulan
 - (ii) Pembiasan
 - (iii) Pembelauan

(c) Kesan pembelauan kurang ketara. Amplitud gelombang selepas C lebih tinggi.

- 3. (a) Frekuensi yang sama - Beza fasa yang tetap
 - (b) (i) Q, S
 - (ii) P, R
 - (c) (i) Sebelum superposisi




(ii) Sebelum superposisi

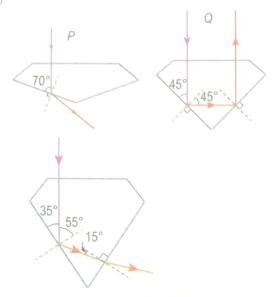
Semasa superposisi

(iii) Sebelum superposisi

- 4. (a) Superposisi gelombang
 - (b) Pinggir cerah dibentuk apabila gelombanggelombang dari dwicelah berinterferens secara

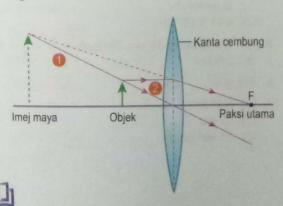
Pinggir gelap dibentuk apabila gelombanggelombang dari dwicelah berinterferens secara memusnah.

- (c) 4.44 × 10⁻⁷ m
- 5. (a) Amplitud = 15 cm, Tempoh = $\frac{1}{f} = \frac{1}{5} = 0.2 \text{ s}$
 - (b) 3.0 m s⁻¹
- 6. 335 m s⁻¹
- 7. (a) 0.25 cm
 - (b) 75 cm
 - (c) 33 000 cm s

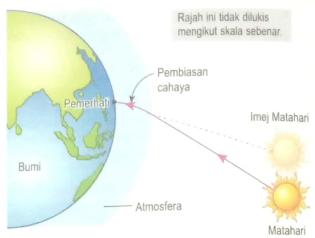


Bab 6 Cahaya dan Optik

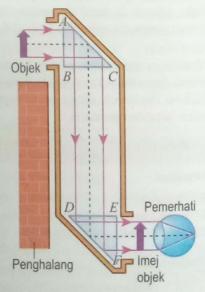
Penilaian Prestasi


- (a) (i) Sudut genting ialah sudut tuju apabila cahaya merambat dari intan ke udara dengan sudut biasan sama dengan 90°.
 - (ii) 2.46

(b)



- (c) Pantulan dalam penuh dan pembiasan cahaya
- 2. 10 cm
- 3. (a) 38.02°
 - (b) $2.26 \times 10^8 \text{ m s}^{-1}$
 - (c) Kaca mempunyai ketumpatan optik yang lebih tinggi kerana apabila cahaya merambat dari air ke kaca, cahaya terbias mendekati garis normal.
- (a) RS ialah jejari semi bulatan dan merupakan garis normal sinar tuju pada titik R.
 - (b) 41.14°
- 5. (a) (i) 1.0003
 - (ii) Nilai indeks biasan udara ialah hampir sama dengan 1, iaitu laju cahaya dalam udara dan dalam vakum adalah hampir sama.
 - (b) Nilai $\Delta\theta$ pada waktu malam yang panas berbeza dengan waktu malam yang sejuk kerana ketumpatan optik udara bergantung pada suhu.
- 6. (a) Tegak dan diperbesar


(b)

- (c) Imej semakin kecil. Jika u lebih besar daripada f, imej nyata yang songsang akan terbentuk pada sisi bertentangan dengan objek.
- (a) Pernyataan kapten itu adalah benar. Sinar cahaya yang memasuki atmosfera dibiaskan oleh lapisan udara yang berlainan ketumpatan optik. Dengan itu, suatu imej ketara bagi Matahari terbentuk di atas kedudukan Matahari yang asal.

(b) Sinar cahaya dari objek menuju secara normal ke sisi AB prisma atas melalui bukaan periskop. Sinar cahaya sampai ke permukaan AC tanpa pembiasan. Sudut tuju ialah 45° dan lebih besar daripada sudut genting prisma, iaitu 42°. Maka, pantulan dalam penuh berlaku di sisi AC dan cahaya dipantulkan ke bawah. Sinar cahaya yang dipantulkan merambat secara normal ke sisi DE prisma bawah. Sekali lagi, sinar cahaya mengalami pantulan dalam penuh di sisi DF. Akhirnya, sinar cahaya keluar tanpa pembiasan di sisi EF dan masuk ke mata pemerhati. Imej yang terhasil adalah tegak dan sama saiz dengan objek.

Cekung Bentuk yang melengkung ke dalam

Cembung Bentuk yang melengkung ke luar

Dalam ketara Jarak antara imej bagi objek dalam bahan optik dengan permukaan

bahan yang menghadap pemerhati

Dalam nyata Jarak antara suatu objek dalam bahan optik dengan permukaan bahan

yang menghadap pemerhati

Daya Kadar perubahan momentum yang bertindak pada suatu objek

dalam arah perubahan momentum objek itu

Daya graviti Daya tarikan semula jadi antara mana-mana dua jasad

Garis yang berserenjang dengan garis tangen pada titik sentuhan

permukaan suatu bahan

Geopegun Sentiasa berada di atas kedudukan yang sama di permukaan Bumi

Hukum gas Hukum yang menghubungkaitkan suhu mutlak, tekanan dan isi padu

suatu gas yang berjisim tetap

Imej maya Imej yang tidak boleh dibentuk pada skrin

Imej nyata Imej yang boleh dibentuk pada skrin

Kejituan Darjah kehampiran suatu nilai pengukuran kepada nilai yang sebenar

Ketumpatan optik Sifat suatu bahan lut sinar yang mempengaruhi kelajuan perambatan

cahaya di dalam bahan itu

Linear Garis lurus

Magnitud Nilai berangka bagi suatu kuantiti fizik

Model heliosentrik Model Sistem Suria yang mana Matahari adalah pusat dan planet-

planet bergerak mengelilingi Matahari

Momentum Hasil darab jisim dan halaju suatu objek yang bergerak

Orbit Lintasan tertutup bagi suatu objek di angkasa lepas yang bergerak

mengelilingi planet atau bintang

Pembesaran linear Nisbah tinggi imej kepada tinggi objek

Pembiasan Pembengkokan sinar cahaya apabila alur cahaya merambat menerusi

medium yang berketumpatan berlainan

Pembelauan Penyebaran gelombang apabila gelombang itu bergerak mengelilingi

tepi suatu halangan atau melalui suatu bukaan

Penjana gelombang Alat yang mengandungi motor atau penggetar untuk menghasilkan

gelombang

Pinggir cerah Jalur cahaya yang dibentuk oleh fenomena interferens membina

Pinggir gelap Jalur dengan kecerahan minimum yang dibentuk oleh fenomena

interferens memusnah

Sudut biasan Sudut yang dibuat oleh sinar terbias dengan garis normal

Sudut tuju Sudut yang dibuat oleh sinar tuju dengan garis normal

Suhu Kuantiti fizik yang memberikan maklumat tentang darjah kepanasan

suatu bahan

Superposisi Pertindihan dua gelombang di suatu titik

Takat didih air Suhu yang tetap apabila air bertukar menjadi stim, iaitu 100°C

Takat lebur ais Suhu yang tetap apabila air bertukar menjadi ais, iaitu 0°C

Tenaga Kebolehan untuk melakukan kerja

Vakum Ruang yang tidak mengandungi jirim

Rumkan

- Anderson, M., Berwald, J., Bolzan, J. F., Clark, R., Craig, P., Frost, R.,... Zorn, M. (2012). Integrated iScience Glencoe. United State of America: McGraw-Hill Education.
- Cutnell, J. D., Johnson, K. W., Young, D., & Stadler, S. (2018). Physics (11th ed.). United State:
- David, L., & Esmund, C. (2012). Science Smart Textbook 6. Singapore: Alston Publishing House
- Hewitt, P. G. (2015). Conceptual Physics (12th ed.). England: Pearson Education Limited.
- Heyworth, R. M. (2010). New Science Discovery Volume 2 (2nd ed.). Singapore: Pearson Education South Asia Pte Ltd.
- Johnson, K. (2016). Physics For You (5th ed.). United Kingdom: Oxford University Press.
- Tan, K. S., Goh, H. C., & Gui, E. H. (2014). Science Around Us Upper Secondary Module 6 Wonders of My Body (II). Singapore: Star Publishing Pte Ltd.
- Hamper, C. (2009). Higher Level Physics Developed Specifically For The IB Diploma. England: Pearson Education Limited.
- Ho, P. L. (2010). In Science Volume 1. Singapore: Star Publishing Pte Ltd.
- Ho, P. L. (2010). In Science Volume 2. Singapore: Star Publishing Pte Ltd.
- Honeysett, I., Lees, D., Macdonald, A., & Bibby, S. (2006). OCR Additional Science for GCSE. United Kingdom: Heinemann.
- Lau, L., & Fong, J. (2013). All You Need To Know: Science (Physics) For GCE 'O' Level. Singapore: Alston Publishing House Pte Ltd.
- National Geographic Society, Feather, R., Jr., & Zike, D. (2002). Astronomy. United States of America: Glencoe McGraw-Hill.
- Pople, S. (2014). Complete Physics for Cambridge IGCSE (3rd ed.). United Kingdom: Oxford University Press.
- Rickard, G., Phillips, G., Johnstone, K., & Roberson, P. (2010). Science Dimensions 2. Australia: Pearson.
- Sang, D. (2014). Cambridge IGCSE Physics Coursebook (2nd ed.). United Kingdom: Cambridge University Press.
- Stannard, P. & Williamson, K. (2006). Science World 7 (3rd ed.). Australia: MacMillan Education Australia Pte Ltd.
- Tho, L. H., Tho, M. Y., & Fong, J. (2008). Interactive Science For Inquiring Minds Lower Secondary Volume B. Singapore: Panpac Education Private Limited.
- Tong, S. S., Ip, H. W., Lam, W. L., & Wong, T. P. (2012). Interactive Science 3B (2nd ed.). Hong Kong: Pearson Education Asia Limited.

makes

Amplitud 178 - 187, 199, 205 Antinod 215 - 216 Arah perambatan 174, 189, 194 Ayunan 173, 184 - 187

Berat 47, 58, 70

Cermin cekung 270 - 275 Cermin cembung 270 - 276 Cermin satah 270

Dalam ketara 237 - 240 Dalam nyata 237 - 240 Daya graviti 46, 50, 70, 79 - 83 Daya impuls 67 - 68 Daya memusat 88 - 91, 99, 103 Dwicelah Young 214, 217, 219

Ekstrapolasi 12, 155, 159 Elips 96 – 97

Formula Kanta Nipis 259, 261 Frekuensi 178 - 182, 196, 211

Garis normal 232, 247 Gelombang air 172 - 178, 197 - 218 Gelombang bunyi 172 - 177, 199, 208 Gelombang elektromagnet 175, 220 - 221

Gelombang mekanik 175
Gelombang melintang 174 – 180
Gelombang membujur 174 – 179
Gelombang pegun 175, 183
Gelombang progresif 174 – 176
Gelombang ultrasonik 192
Gerakan linear 26, 28, 30, 37
Gerakan membulat 88 – 90, 97

Getaran 173, 184, 188

Haba pendam 137

Haba pendam tentu 138 – 145

Halaju 6, 88, 232 – 233

Halaju lepas 107 – 109

Halaju satelit 88

Hukum Boyle 151 – 152

Hukum Charles 156

Hukum Gay-Lussac 160 – 161

Hukum Kepler 96 – 100

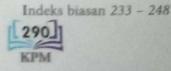
Hukum Snell 234 – 235

Inersia 52 - 57 Interferens membina 211, 214 Interferens memusnah 211, 214 Interpolasi 12 Isi padu 6, 148 - 162

Jarak imej 252, 258, 271 Jarak objek 252, 258, 266 Jatuh bebas 46 – 48, 50 Jejari orbit 85, 97 – 104 Jisim 6, 47, 53 – 55, 58

Kaedah tanpa paralaks 238 - 239 Kanta cekung 251 - 262 Kanta cembung 251 - 262 Kanta pencapah 252, 261 Kanta penumpu 252, 261 Kuantiti fizik 4, 70, 232 Kecerunan 10, 37 Kekuatan medan graviti 70 - 71 Kelajuan cahaya 240, 279 Keseimbangan terma 120 - 122 Ketumpatan optik 232, 242, 247 Koheren 211, 214, 216 Kuantiti asas 4, 6 - 7 Kuantiti skalar 8, 26 Kuantiti terbitan 4, 6 Kuantiti vektor 8, 58, 70 Kutub cermin 271

Laju gelombang 178, 182, 196 Logamaya 247 Lembangan 177, 211


Magnitud 5, 8, 67 – 68 Mampatan 177, 179, 185 Maya 252, 274 Medan elektrik 175, 220 Medan magnet 175, 220 Momentum 7, 58 – 68 Muatan haba 125 – 126 Muatan haba tentu 127 – 135 Muka gelombang 188, 194 – 207

Nod 215 - 216 Nyata 252, 266, 274

Orbit satelit 103

Paksi major 96 - 97 Paksi minor 96 - 97 Paksi utama 252, 254, 271 Panjang fokus 252, 259, 267 Panjang gelombang 178, 189, 196 Pantulan dalam penuh 242 - 246 Pantulan gelombang 188 – 193 Pecutan 7, 26 - 39, 47 Pecutan graviti 46 – 49, 70, 104 Pelembapan 184 - 187 Pembelauan gelombang 202 - 208 Pembesaran linear 257 – 258 Pembiasan cahaya 232 - 237, 240 Pembiasan gelombang 194 - 200 Penentu ukuran 123 - 124 Pinggir cerah 214, 217 Pinggir gelap 214, 217 Prinsip superposisi 210 Prisma 248 - 249 Profil gelombang 174 – 180 Puncak 177, 210 - 211 Pusat kelengkungan 271 Pusat optik 252, 257, 266 Renggangan 177 – 179, 185 Resonans 184 - 187 Rumus 6, 83, 127, 200 Saiz celah 203, 207 - 208 Saiz imej 257 - 258 Saiz objek 257 - 258 Satelit bukan geopegun 105 - 106 Satelit geopegun 105 - 106 Sesaran 9, 26, 178, 210 - 211 Sinar cahaya 188, 233, 271 Sinar muncul 232, 236 Sinar tuju 232, 235 Songsang 256, 267, 274 Spektrum elektromagnet 221 Sudut biasan 233, 243 Sudut genting 243, 246 - 247 Sudut pantulan 190

Sudut tuju 233, 235, 243, 247 Suhu 4, 6, 121 – 139 Suhu termodinamik 4 Tegak 248, 256, 274 Tekanan 7, 148 – 163 Tempoh 98, 132, 178 Titik fokus 252, 257, 271 Titik-titik sefasa 179, 188 Unit S.I. 5 – 7, 80, 137, 147

Scanned by CamScanner