PEPERIKSAAN PERCUBAAN SPM PERLIS 2020

CHEMISTRY 4541/2 Paper 2

	Quest Numl	ion Der	Answer	Mark
1	(a)	(i)	Water	1
		(ii)	Sodium Chloride	1
	(b)	(i)	Liquid	1
		(ii)	To achieve duplet electrons arrangement	1
	(c)	(i)	Ionic bond	1
		(ii)	Ion	1
	(d)	(i)	2.8.7	1
		(ii)	HCl	1
		(iii)	Low melting point // exist as gas in room temperature // low boiling point // dissolve in water // dissolve in organic solvent	1
			TOTAL	9

2.	(a)	Ator	ns of same elemen	that have same number of protons		
		but	different number o	neutrons		1
	(b)	To d	etect the leakage o	underground pipe//		1
		To d	etect the blood clo	in blood capillary		
	(c)					
			Isotope	Number of elcctron Number of neutro	۱	
			Isotop	Bilangan elektron Bilangan neutron		
			Sodium-23	11 12	_	
			Natrium-23	11 12		1
			Sodium-24	11 13		
			Natrium -24	11 15		1
	(d)	(i)	The heat energy	bsorbed by particles is		1
			use to overcome	he forces attraction between particles		1
		(ii)		emperature / °C		
				Suhy /°C		
			Freezing point			
			Takat beku	80		
				→ Tim	s/s	
				Mas	als	
				11103		
				6		
				Corect	title and unit	1
				Correct s	hape of curve	1
				mark	reezing ponit	1
					TOTAL	9

Qu	estion		Answer	Mark
nui	nber			
3	(a)	(i)	Ester	1
		(ii)	Propyl butanoate	1
	(b)	(i)	Esterification	1
		(ii)	Butanoic acid	1
		(iii)	$C_{3}H_{7}OH + C_{3}H_{7}COOH \rightarrow C_{3}H_{7}COOC_{3}H_{7} + H_{2}O$	
			correct chemical formulae for reactant and product [1m]	2
			balanced equation [1m]	
	(c)		$C_{3}H_{7}OH + \frac{9}{2}O_{2} \rightarrow 3CO_{2} + 4H_{2}O //$	
			$2C_3H_7OH + 9O_2 \rightarrow 6CO_2 + 8H_2O$	
			correct chemical formulae for reactant and product [1m] balanced equation [1m]	2
	(d)		$ \begin{array}{cccccccccc} H & H & OH \\ & & \\ H - C - C - C - C - H \\ & & \\ H & H & H \\ H & H & H \\ H - C - C - C - H \\ & & \\ H & OH H \end{array} $	1
			Total	10

	Questio Numbo	on er	Answer	Mark
4	(a)	(i)	period 2	1
		(ii)	alkali metal	1
		(iii)	T^+	1
	(b)	(i)	more reactive	1
		(ii)	atomic size for Q is bigger//	
			force of attraction between nucleus and electron for atom Q is	1
			weaker	
	(c)	(i)	$4Na + O_2 \rightarrow 2Na_2O$	
			correct chemical formulae for reactant and product [1m]	2
			balanced equation [1m]	
		(ii)	mol Na 2.3/23= 0.1 [1 m]	
				2
			from the equation 4 mol Na : 1 mol O_2	3
			if 0.1 mol Na : 0.025 mol O ₂ [1 m]	
			mass $O_2 = 0.025 \text{ x } 32 = 0.8 \text{ g} [1 \text{ m}]$	
		•	TOTAL	10

	Que Nun	stion nber	Answer	Mark
5	(a)		positively charged ion	1
	(b)	(i)	Lead (II) iodide / Plumbum (II) iodida	1
			yellow precipitate will dissolve when heated	1
		(11)	yellow precipitate will form again when it is cooled	1
		(iii)	$Pb^{2+} + 2 I^- \rightarrow PbI_2$	
			correct chemical formulae for reactant and product [1m]	2
		(iv)	from the equation 2 mol I ⁻ · 1 mol PbI ₂	
		(11)	if $0.0002 \text{ mol } I^- : 0.0001 \text{ mol } PbI_2 [1 m]$	2
			mass $PbI_2 = 0.0001 \text{ x } 461 = 0.0461 \text{ g}$ [1 m]	2
	(c)		zinc ion / Zn^{2+}	1
	(d)		1. add excess sodium hydroxide solution into the industrial waste	1
	, í		water	1
			2. blue precipitate formed	
			OR	
			1. add excess ammonia solution into the industrial waste water	
			2. dark blue solution formed	
			TOTAL	11

6.	(a)	To r	educe heat lost to surrounding//	1
		Poly	styrene is a good insulator of heat	
	(b)	Pb ²⁺	$+ SO_4^{2-} \rightarrow PbSO_4$	1
	(c)	(i)	(50+50) x 4.2 x (32.0 – 28.0) J // 1680 J // 1.68 kJ	
			(r: without unit)	1
		(ii)	Number of mole of lead(II) ion	
			$n = 0.5 \times 50$ // 0.025 mol	
			1000	
			OR	1
			Number of mole of sulphate ion	
			$n = 0.5 \ge 50$ // 0.025 mol	
			1000	
			$0.025 \text{ mol PbSO4 precipitate produce} \rightarrow 1680 \text{ J}$	
			1.0 mol PbSO4 precipitate produce $\rightarrow 67200 \text{ J}$	
			OR	1
			<u>1680</u> // - <u>1.68</u>	
			0.025 0.025	
			$= -67200 \text{ J mol}^{-1} // - 67.2 \text{ kJ mol}^{-1}$	
			Heat of precipitation = $\Delta H = -67.2 \text{ kJ mol}^{-1}$	1
			(r: without unit)	
	(d)	(i)	Heat of combustion is heat released when 1 mol of alcohol/fuel is burnt in excess oxygen	1
		(ii)	Range between 3320-3340 kJ	1
		(ii)	1.number of carbon atom increases	1
			 2. more carbon dioxide and water are formed 3. more heat released during bond formation 	1
			TOTAL	11

Qu	estion	1	Answer	Mark
nui	nber			
7	(a)		Set I: In dry state, hydroxide ions in solid sodium hydroxide are	1
			arranged orderly at fixed position.	
			Dry solid sodium hydroxide does not show alkaline properties.	1
			Set II: When moist red litmus paper is used/ water is present, sodium	
			hydroxide ionises in water to produce free moving hydroxide ions.	1
			Sodium hydroxide shows alkaline properties.	1
	(b)		Sodium hydroxide is strong alkali but ammonia is weak alkali.	1
			Sodium hydroxide ionises completely in water but ammonia ionises	
			partially in water.	1
			Sodium hydroxide produces high concentration of hydroxide ions but	
			ammonia produces low concentration of hydroxide ions.	1
			The higher the concentration of hydroxide ions, the higher the pH	1
			value.	
	(c)	(i)	Dilution	1
			$0.1 \times V = 0.02 \times 250$	
		<i>(</i> !)	$Volume = 50 \text{ cm}^3$	
		(11)	pH value is lower than 13	
			Concentration of hydroxide ions decreases.	
			The lower the concentration of hydroxide ions, the lower the pH	1
		(:::)	Value.	1
		(111)	$\frac{1}{1}$	1
			$\Pi_{2}SO4 + 2\Pi aO\Pi \rightarrow \Pi a_{2}SO4 + 2\Pi_{2}O$	1
			balanced equation [1m]	1
			Calculation:	-
			0.02×25	
			Number of mole of NaOH = $\frac{1000}{1000}$ // 0.0005 mol	1
			2 mol of NaOH reacts with 1 mol of HaSO($//$	_
			0.0005 mol of NaOH reacts with 0.00025 mol of H2SO4	1
			0.0005 mor or 112504	1
			Concentration of $H_2SO_4 = \frac{0.00023 \times 1000}{25} \text{ mol dm}^{-3} // 0.01 \text{ mol dm}^{-3}$	1
				1
				OR
			$M \times 25 = 1$	
			$\left \frac{m_a + 2s}{0.02 \times 25} \right = \frac{1}{2}$	1+1
			$M = 0.01 \text{ mol dm}^{-3}$	- · · ·
			$N_{a} = 0.01 \text{ mor am}$	1
			Total	20

Ques num	stion ber		Answer	Mark
8	(a)	(i)	 oxidation number for magnesium is +2 oxidation number for ferum is +3 	1 1
		(ii)	 MgCl₂ is magnesium chloride / magnesium klorida Fe₂O₃ is iron(II) oxide / ferum (II) oksida 	1 1
	(b)	(i)	redox//oxidation and reduction	1
		(ii)	 metal Y is copper metal Z is zinc Mg, Z, Y 2Mg + O₂ → 2MgO 	1 1 1
			balanced equation[1m]	2
	(c)	(i)	1. metal R is Sn // Pb // Cu//Ag 2. metal S is Mg//Al//Zn <u>Set 1</u> 3. Iron rusts/corrode 4. Iron is more electropositive than R 5. Fe^{2+} is formed 6. $Fe \rightarrow Fe^{2+} + 2e$ 7. Iron is oxidized <u>Set II</u> 8. Iron does not rust 9. Iron is less electropositive than S 10. Presence of OH ⁻ 11. $O_2 + H_2O + 4e \rightarrow 4OH^-$ 12. Metal S is oxidized TOTAL	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
			TOTAL	20

(Questi	ion	Answer	Mark
	Numb	er		
9	(a)	(i)	• Y: (Name of any metal situated above Cu in the	1
			electrochemical series)	
			 Z: (Name of any acid) 	1
			Sample answer:	
			Y: Magnesium // Zinc // Aluminium	
			[Reject : Sodium // Potassium]	
			Z: Hydrochloric acid // Sulphuric acid // Nitric acid [Accept: weak acid]	
			 Chemical equation: 	
			Correct formula of reactants and	1
			products Balanced	1
			Sample answer:	4
			$Mg + 2HCI \rightarrow MgCl_2 + H_2$	4
		(ii)	Experiment I Average Rate of Reaction = $30/10 = 3.0 \text{ cm}^3\text{s}^{-1}$	1
			Experiment II Average Rate of Reaction = $30/20$ = $1.5 \text{ cm}^3\text{s}^{-1}$	1
			[With correct unit]	2
		<i></i>		
		(111)	 Rate of reaction in Experiment I is higher than Experiment II The size of metal Y in Experiment I is smaller than 	1
			Experiment II // The total surface area of metal Y in Experiment I larger than Experiment II	1
			 Frequency of collision between hydrogen ions and atoms of 	
			Y in Experiment I is higher than in Experiment II	1
			 Frequency of effective collision (between the particles) in Experiment I is higher than in Experiment II 	1
				4

(b)	Temperature:	
	1. $(20 - 100)$ cm ³ of $(0.1 - 1.0)$ mol dm ⁻³ sodium thiosulphate	
	solution is measured	
	2. Sodium thiopsulphate solution is then poured into a conical	
	IIASK 3 The initial temperature of sodium thiosulphate is recorded	
	 4. The conical flask is placed on the top of a piece of white paper marked with "X" 	
	5. 5.0 cm ³ of $(0.1 - 1.0)$ mol dm ⁻³ hydrochloric acid is measured	
	6. The hydrochloric acid is poured quickly into the conical flask.	
	7. A stopwatch is started immediately	
	8. The conical flask is swirled throughout the experiment	
	9. The time taken for the mark "X" to disappear from sight is	
	10 The experiment is repeated using sodium thiosulphate solution	
	solution at 35°C, 40°C, 45°C and 50°C.	
	OR	
	Presence of catalyst:	
	1. $(25-50)$ cm ³ of $(0.1-1.0)$ mol dm ⁻³ of hydrochloric acid is	
	measured and poured into a conical flask.	
	2 About 5.0 g of zinc granules is weigh.	
	3. A burette is filled with water and inverted into a basin	
	containing water 4. The water level in the burette is adjusted to 50 cm^3 mark	
	5 The granulated zinc is added into the conical flask	
	6. Immediately the conical flask is closed and connect it using	
	delivery tube to the burette	
	7. The stopwatch is started.	
	8. The conical flask is shaken steadily.	
	9. Kecord volume of hydrogen gas every 30 seconds interval. 10 The experiment is repeated by adding 5 cm ³ of conner(II)	
	sulphate solution into the reactants mixture.	
	r	

10.	(a)	-Cleaning agent Y is more effective than cleaning agent X	1
		-Cleaning agent Y do not form scum in hard water , so it can remove oily stain	1
		-Cleaning agent X form scum in hard water and cannot remove oily stain	1
		-Calcium ions and magnesium ions in hard water react with cleaning agent X to form scum/white precipitate	1
	(b)	(i) P=bronze OR P=brass Q= brass Q=bronze	1 1
		 [Bronze / alloy P] // [Brass / alloy Q /] is harder than it cooper / pure metal The presence of different sizes of stanum/zinc atoms disrupts the ordely 	1
		 arrangement of atoms in cooper / pure metal These make the atomic layers of atoms in alloys is harder to slide over one another The layer of atoms in copper/ pure metal easily slide one another because it 	1 1 1
		contain same size of atoms	
		(ii)	
		Functional diagram labelled diagram	1 1
		 A steel ball is attached to the surface of the copper block using cellophane tape. A weight with a mass of 1 kg is hung at a height of 50 cm above the steel ball. The weight is then dropped on the steel ball. The diameter of the dent on the surface of the copper block is measured and recorded. Steps 1 to 4 are repeated for two times at different places on the copper block The experiment is repeated by using a [bronze/brass/P/Q] block to replace the copper block. 	1 1 1 1 1

	Type of material	Diame	ter of de	nt (cm)	Average diameter of dent (cm)	
		1	2	3		
	Jenis bahan					
	Copper	a ₁	a_2	a ₃	a1 + a2 + a3 // a	1
					3	
	Bronze/Brass	b ₁	b ₂	b ₃	b1 + b2 + b3 // b	1
					3	
Cor	nclusion		I	<u> </u>		
[Br	onze / alloy P] // [b	orass / allo	oy Q] is l	narder th	an coppery	1
						r
					ТОТА	L 2